IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223028086.html
   My bibliography  Save this article

Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity

Author

Listed:
  • Zhang, Zhengcai
  • Kusalik, Peter G.
  • Liu, Changling
  • Wu, Nengyou

Abstract

Gas hydrate accumulation and hydrate-based gas storage and transportation technology are intimately linked to the formation process of hydrates in the pore space. However, the molecular mechanism underlying this process remains unclear. Here, we employ molecular simulations to investigate methane hydrate formation in surface-modified silica pores, with specific emphasis on the impact of pore surface characteristics. Our results show that under the same thermodynamic conditions, methane hydrate shows no preference towards either the hydrophobic or hydrophilic pore surface, and tends to nucleate in the central part of the hydrophilic slit. It means that whilst the surface properties can impact the dynamics and structure of the molecules on it, thus affecting methane concentration and, as a result, the probability of cage formation, the confinement effect ultimately controls the nucleation process. Furthermore, the pre-filling of the pores with methane can significantly accelerate hydrate formation. This is because methane bubbles adsorbed in the pores can noticeably elevate methane concentration in solution. Moreover, the hydrophobic surface can help with methane dissolution in water, which can both promote the transportation of molecules between methane bubbles and enhance methane hydrate nucleation. This study enhances understanding of the hydrate formation process in pores, which can aid in the design of gas hydrate promoters or inhibitors that meet the demands of hydrate technologies.

Suggested Citation

  • Zhang, Zhengcai & Kusalik, Peter G. & Liu, Changling & Wu, Nengyou, 2023. "Methane hydrate formation in slit-shaped pores: Impacts of surface hydrophilicity," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028086
    DOI: 10.1016/j.energy.2023.129414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223028086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Rui & Kou, Xuan & Wu, Tian-Wei & Li, Xiao-Sen & Wang, Yi, 2023. "Pore-scale experimental investigation of the fluid flow effects on methane hydrate formation," Energy, Elsevier, vol. 271(C).
    2. Wu, Yongji & He, Yurong & Tang, Tianqi & Zhai, Ming, 2023. "Molecular dynamic simulations of methane hydrate formation between solid surfaces: Implications for methane storage," Energy, Elsevier, vol. 262(PB).
    3. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    4. Zhang, Zhengcai & Kusalik, Peter G. & Wu, Nengyou & Liu, Changling & Zhang, Yongchao, 2022. "Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores," Energy, Elsevier, vol. 257(C).
    5. He, Zhongjin & Mi, Fengyi & Ning, Fulong, 2021. "Molecular insights into CO2 hydrate formation in the presence of hydrophilic and hydrophobic solid surfaces," Energy, Elsevier, vol. 234(C).
    6. Sun, Huiru & Chen, Bingbing & Li, Kehan & Song, Yongchen & Yang, Mingjun & Jiang, Lanlan & Yan, Jinyue, 2023. "Methane hydrate re-formation and blockage mechanism in a pore-level water-gas flow process," Energy, Elsevier, vol. 263(PC).
    7. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chang & Zhang, Yu & Li, Xiaosen & He, Jiayuan & Gao, Fei & Chen, Zhaoyang, 2024. "Investigations into methane hydrate formation, accumulation, and distribution in sediments with different contents of illite clay," Applied Energy, Elsevier, vol. 359(C).
    2. Lin, Yanwen & Hao, Yongchao & Shi, Qiao & Xu, Yihua & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2024. "Enhanced formation of methane hydrates via graphene oxide: Machine learning insights from molecular dynamics simulations," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yanghui & Wang, Le & Xie, Yao & Wu, Peng & Liu, Tao & Huang, Lei & Zhang, Shuheng & Song, Yongchen, 2023. "Deformation characteristics of methane hydrate-bearing clayey and sandy sediments during depressurization dissociation," Energy, Elsevier, vol. 275(C).
    2. Zhang, Ningtao & Li, Shuxia & Chen, Litao & Guo, Yang & Liu, Lu, 2024. "Study of gas-liquid two-phase flow characteristics in hydrate-bearing sediments," Energy, Elsevier, vol. 290(C).
    3. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    4. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    5. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    6. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    7. Xianbing Hu & Lingjie Sun & Chengyang Yuan & Man Li & Hongsheng Dong & Lunxiang Zhang & Lei Yang & Jiafei Zhao & Yongchen Song, 2023. "Principle and Feasibility Study of Proposed Hydrate-Based Cyclopentane Purification Technology," Energies, MDPI, vol. 16(12), pages 1-10, June.
    8. Wang, Pengfei & Teng, Ying & Zhu, Jinlong & Bao, Wancheng & Han, Songbai & Li, Yun & Zhao, Yusheng & Xie, Heping, 2022. "Review on the synergistic effect between metal–organic frameworks and gas hydrates for CH4 storage and CO2 separation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Deng, Zhixia & Fan, Shuanshi & Wang, Yanhong & Lang, Xuemei & Li, Gang & Liu, Faping & Li, Mengyang, 2023. "High storage capacity and high formation rate of carbon dioxide hydrates via super-hydrophobic fluorinated graphenes," Energy, Elsevier, vol. 264(C).
    10. Zhang, Zhengcai & Kusalik, Peter G. & Wu, Nengyou & Liu, Changling & Zhang, Yongchao, 2022. "Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores," Energy, Elsevier, vol. 257(C).
    11. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
    12. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).
    13. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    14. Lin, Yanwen & Hao, Yongchao & Shi, Qiao & Xu, Yihua & Song, Zixuan & Zhou, Ziyue & Fu, Yuequn & Zhang, Zhisen & Wu, Jianyang, 2024. "Enhanced formation of methane hydrates via graphene oxide: Machine learning insights from molecular dynamics simulations," Energy, Elsevier, vol. 289(C).
    15. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    16. Liang, Yunhang & Bi, Xueqing & Zhao, Yunlong & Tian, Runnan & Zhao, Peihe & Fang, Wenjing & Liu, Bing, 2024. "Rapid decomposition of methane hydrates induced by terahertz bidirectional pulse electric fields," Energy, Elsevier, vol. 286(C).
    17. Yan Li & Alberto Maria Gambelli & Yizhi Rao & Xuejian Liu & Zhenyuan Yin & Federico Rossi, 2024. "Unraveling the Role of Amino Acid L -Tryptophan Concentration in Enhancing CO 2 Hydrate Kinetics," Energies, MDPI, vol. 17(15), pages 1-15, July.
    18. Zhang, Xuemin & Yang, Huijie & Huang, Tingting & Li, Jinping & Li, Pengyu & Wu, Qingbai & Wang, Yingmei & Zhang, Peng, 2022. "Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    20. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.