IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000932.html
   My bibliography  Save this article

Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal

Author

Listed:
  • Li, Fenghai
  • Zhao, Wei
  • Li, Junguo
  • Fan, Hongli
  • Xu, Meiling
  • Han, Guopeng
  • Guo, Mingxi
  • Wang, Zhiqing
  • Huang, Jiejie
  • Fang, Yitian

Abstract

To explore the effects of phosphogypsum (PG) on coal ash fusion characteristics, the ash fusion temperature (AFT) modifications of two coals (Xiaolongtan coal (XLT) and Jiaozuo coal (JZ)) by PG addition, and their mechanisms under a reducing atmosphere were analyzed. With increasing PG mass ratio, the AFT of mixed XLT increased, while the AFT decreased for JZ mixtures. To meet the liquid-slag-discharge requirement during entrained-flow gasification, the PG suitable mass ratios were 4.9%–8.9% and 6.5%–9.0% for XLT and JZ, respectively. The different AFT variations resulted from the changes in its base/acid ratio ((CaO + MgO + Na2O + K2O + Fe2O3 + SO3)/(Al2O3 + SiO2 + P2O5)). With PG addition, the decreasing relative low melting-point (MP) CaAl2Si2O8 and increasing high-calcium minerals (e.g., Ca2Al2SiO7, Ca3SiO5, Ca5P2SiO12, and Ca7MgSi4O16) caused the mixed AFT to increase for high-calcium XLT; decreasing high-MP Al6Si2O13 and increasing CaAl2Si2O8 content caused the mixed AFT for high silicon−aluminum JZ to decrease. The AFT variation might also be explained by the variations in the temperature range (between the appearance of liquid-phase and all minerals complete change into the liquid-phase) and ash composition positions of XLT or JZ mixtures in the SiO2–Al2O3–CaO ternary phase diagram with increasing PG mass ratio.

Suggested Citation

  • Li, Fenghai & Zhao, Wei & Li, Junguo & Fan, Hongli & Xu, Meiling & Han, Guopeng & Guo, Mingxi & Wang, Zhiqing & Huang, Jiejie & Fang, Yitian, 2023. "Investigation on influencing mechanisms of phosphogypsum (PG) on the ash fusion behaviors of coal," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000932
    DOI: 10.1016/j.energy.2023.126699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Young-Kon & Mun, Tae-Young & Cho, Min-Hwan & Kim, Joo-Sik, 2016. "Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal," Energy, Elsevier, vol. 114(C), pages 121-128.
    2. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    3. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    4. Gupta, Saurabh & De, Santanu, 2022. "An experimental investigation of high-ash coal gasification in a pilot-scale bubbling fluidized bed reactor," Energy, Elsevier, vol. 244(PB).
    5. Yang, Jie & Wei, Yi & Yang, Jing & Xiang, Huaping & Ma, Liping & Zhang, Wei & Wang, Lichun & Peng, Yuhui & Liu, Hongpan, 2019. "Syngas production by chemical looping gasification using Fe supported on phosphogypsum compound oxygen carrier," Energy, Elsevier, vol. 168(C), pages 126-135.
    6. Chen, Qiuju & Ding, Wenjin & Sun, Hongjuan & Peng, Tongjiang & Ma, Guohua, 2020. "Indirect mineral carbonation of phosphogypsum for CO2 sequestration," Energy, Elsevier, vol. 206(C).
    7. Ding, Wenjin & Chen, Qiuju & Sun, Hongjuan & Peng, Tongjiang, 2019. "Modified phosphogypsum sequestrating CO2 and characteristics of the carbonation product," Energy, Elsevier, vol. 182(C), pages 224-235.
    8. Pan, Qinghuan & Ma, Liping & Du, Wang & Yang, Jie & Ao, Ran & Yin, Xia & Qing, Sancheng, 2022. "Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag," Energy, Elsevier, vol. 241(C).
    9. Schulze, S. & Richter, A. & Vascellari, M. & Gupta, A. & Meyer, B. & Nikrityuk, P.A., 2016. "Novel intrinsic-based submodel for char particle gasification in entrained-flow gasifiers: Model development, validation and illustration," Applied Energy, Elsevier, vol. 164(C), pages 805-814.
    10. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    2. Li, Fenghai & Zhou, Meijie & zhao, Wei & Liu, Xuefei & Yang, Ziqiang & Fan, Hongli & Han, Guopeng & Li, Junguo & Xu, Meiling & Fang, Yitian, 2024. "Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Fenghai & Zhou, Meijie & zhao, Wei & Liu, Xuefei & Yang, Ziqiang & Fan, Hongli & Han, Guopeng & Li, Junguo & Xu, Meiling & Fang, Yitian, 2024. "Ash fusion behavior modification mechanisms of high-calcium coal by coal blending and its ash viscosity predication," Energy, Elsevier, vol. 288(C).
    2. Li, Fenghai & Yang, Ziqiang & Li, Yang & Han, Guopeng & Fan, Hongli & Liu, Xuefei & Xu, Meiling & Guo, Mingxi & Fang, Yitian, 2023. "The effects of Na2O/K2O flux on ash fusion characteristics for high silicon-aluminum coal in entrained-flow bed gasification," Energy, Elsevier, vol. 282(C).
    3. Li, Meng & Wu, Hao & Xu, Jianliang & Yu, Guangsuo & Chen, Xueli, 2023. "Exploring influence of MgO/SiO2 on viscosity-temperature property of coal ash slags under entrained flow gasification condition," Energy, Elsevier, vol. 284(C).
    4. Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).
    5. Baizhi Wu & Haibin Wang & Chunlei Li & Yuan Gong & Yi Wang, 2023. "Progress in the Preparation of Calcium Carbonate by Indirect Mineralization of Industrial By-Product Gypsum," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    6. Li, Fenghai & Zhao, Chaoyue & Guo, Qianqian & Li, Yang & Fan, Hongli & Guo, Mingxi & Wu, Lishun & Huang, Jiejie & Fang, Yitian, 2020. "Exploration in ash-deposition (AD) behavior modification of low-rank coal by manure addition," Energy, Elsevier, vol. 208(C).
    7. Liu, Zhuo & Li, Jianbo & Long, Xiaofei & Lu, Xiaofeng, 2022. "Mechanisms and characteristics of ash layer formation on bed particles during circulating fluidized bed combustion of Zhundong lignite," Energy, Elsevier, vol. 245(C).
    8. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    9. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    10. Yang, Jie & Han, Changye & Liu, Yuchen & Yan, Xiang & Dong, Shenlin & Ma, Liping & Dai, Quxiu & Huang, Bing & Sun, Mingyi & Yin, Xia & Xie, Longgui & Du, Wang, 2024. "CO2 capture by the slag from lignite's chemical looping gasification using carbide slag," Energy, Elsevier, vol. 301(C).
    11. Martínez, Laura V. & Rubiano, Jairo E. & Figueredo, Manuel & Gómez, María F., 2020. "Experimental study on the performance of gasification of corncobs in a downdraft fixed bed gasifier at various conditions," Renewable Energy, Elsevier, vol. 148(C), pages 1216-1226.
    12. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
    13. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    14. Miao, Hengyang & Wang, Zhiqing & Wang, Zhefan & Sun, Haochen & Li, Xiangyu & Liu, Zheyu & Dong, Libo & Zhao, Jiantao & Huang, Jiejie & Fang, Yitian, 2022. "Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue," Energy, Elsevier, vol. 255(C).
    15. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    16. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    17. Zhou, Tianxing & Zhang, Weiwei & Luo, Siyi & Zuo, Zongliang & Ren, Dongdong, 2023. "The effect of ash fusion characteristic on the structure characteristics of carbon and the migration of potassium during rice straw high-temperature gasification process," Energy, Elsevier, vol. 284(C).
    18. Ziqiang Yang & Fenghai Li & Mingjie Ma & Xuefei Liu & Hongli Fan & Zhenzhu Li & Yong Wang & Yitian Fang, 2023. "Regulation Mechanism of Solid Waste on Ash Fusion Characteristics of Sorghum Straw under O 2 /CO 2 Atmosphere," Energies, MDPI, vol. 16(20), pages 1-17, October.
    19. Hariana, & Ghazidin, Hafizh & Putra, Hanafi Prida & Darmawan, Arif & Prabowo, & Hilmawan, Edi & Aziz, Muhammad, 2023. "The effects of additives on deposit formation during co-firing of high-sodium coal with high-potassium and -chlorine biomass," Energy, Elsevier, vol. 271(C).
    20. Chen, Qiuju & Ding, Wenjin & Sun, Hongjuan & Peng, Tongjiang, 2019. "Mineral carbonation of yellow phosphorus slag and characterization of carbonated product," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.