IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027780.html
   My bibliography  Save this article

System design and thermo-economic analysis of a new coal power generation system based on supercritical water gasification with full CO2 capture

Author

Listed:
  • Mu, Ruiqi
  • Liu, Ming
  • Zhang, Peiye
  • Yan, Junjie

Abstract

To achieve sustainable energy supply and carbon neutral, it is essential to enhance the efficiency and reduce carbon emissions for coal power. In this study, a coal power generation system based on supercritical water gasification (SCWG) with full CO2 capture is proposed. The system achieves autothermal gasification by partial oxidation of coal in the SCWG gasifier. Gasification water is preheated by turbine exhaust, and organic Rankine cycle (ORC) is integrated to recover the waste heat of turbine exhaust. Simulation and thermodynamic analysis models of the system are developed. Results show the energy efficiency and exergy efficiency of system with benchmark parameters reach 52.95 % and 54.11 %, respectively. The largest exergy destruction occurs in gasifier and accounts for 41.36 % of the total exergy loss. Irreversibility of heat transfer mainly occurs in water heat exchanger and ORC, accounting for 4.81 % and 5.59 % of the total loss. Effects of key operating parameters on the system performance are investigated. Results show the optimal turbine exhaust pressure is 0.1 MPa, and higher turbine inlet temperature can enhance the system efficiency. System with reheat configuration shows potential in thermodynamic and economic aspects, and the exergy efficiency of double reheat system is improved from 37.25 % to 45.08 %.

Suggested Citation

  • Mu, Ruiqi & Liu, Ming & Zhang, Peiye & Yan, Junjie, 2023. "System design and thermo-economic analysis of a new coal power generation system based on supercritical water gasification with full CO2 capture," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027780
    DOI: 10.1016/j.energy.2023.129384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2011. "Thermodynamic analysis of air-blown gasification for IGCC applications," Applied Energy, Elsevier, vol. 88(11), pages 3949-3958.
    2. Duan, Liqiang & Feng, Tao & Jia, Shilun & Yu, Xiaohui, 2016. "Study on the performance of coal-fired power plant integrated with Ca-looping CO2 capture system with recarbonation process," Energy, Elsevier, vol. 115(P1), pages 942-953.
    3. Wang, Yu & Ren, Changyifan & Guo, Shenghui & Liu, Shi & Du, Mingming & Chen, Yunan & Guo, Liejin, 2023. "Thermodynamic and environmental analysis of heat supply in pig manure supercritical water gasification system," Energy, Elsevier, vol. 263(PA).
    4. Al-Nimr, Moh’d A. & Bukhari, Mohammad & Mansour, Mansour, 2017. "A combined CPV/T and ORC solar power generation system integrated with geothermal cooling and electrolyser/fuel cell storage unit," Energy, Elsevier, vol. 133(C), pages 513-524.
    5. Zhang, Xuelei & Zhang, Zhuoyuan & Wang, Gaofeng, 2023. "Thermodynamic and economic investigation of a novel combined cycle in coal-fired power plant with CO2 capture via Ca-looping," Energy, Elsevier, vol. 263(PB).
    6. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    7. Marchionni, Matteo & Bianchi, Giuseppe & Tassou, Savvas A., 2018. "Techno-economic assessment of Joule-Brayton cycle architectures for heat to power conversion from high-grade heat sources using CO2 in the supercritical state," Energy, Elsevier, vol. 148(C), pages 1140-1152.
    8. Chen, Zhewen & Zhang, Xiaosong & Han, Wei & Gao, Lin & Li, Sheng, 2018. "A power generation system with integrated supercritical water gasification of coal and CO2 capture," Energy, Elsevier, vol. 142(C), pages 723-730.
    9. Xue, Xiaodong & Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Jin, Hongguang & Wang, Xiaodong, 2023. "Proposal and investigation of a high-efficiency coal-fired power generation system enabled by chemical recuperative supercritical water coal gasification," Energy, Elsevier, vol. 267(C).
    10. Chen, Zhewen & Zhang, Xiaosong & Li, Sheng & Gao, Lin, 2017. "Novel power generation models integrated supercritical water gasification of coal and parallel partial chemical heat recovery," Energy, Elsevier, vol. 134(C), pages 933-942.
    11. Ishida, Masaru, 2000. "Hierarchical structure of thermodynamics," Applied Energy, Elsevier, vol. 67(1-2), pages 221-230, September.
    12. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    13. Chen, Zhewen & Gao, Lin & Zhang, Xiaosong & Han, Wei & Li, Sheng, 2018. "High-efficiency power generation system with integrated supercritical water gasification of coal," Energy, Elsevier, vol. 159(C), pages 810-816.
    14. Fu, Chao & Gundersen, Truls, 2012. "Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes," Energy, Elsevier, vol. 44(1), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2024. "Techno-economic analysis of a novel concept for the combination of methane pyrolysis in molten salt with heliostat solar field," Energy, Elsevier, vol. 301(C).
    2. Zhou, Jianzhao & Ayub, Yousaf & Shi, Tao & Ren, Jingzheng & He, Chang, 2024. "Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Xiaodong & Liu, Changchun & Han, Wei & Wang, Zefeng & Zhang, Na & Jin, Hongguang & Wang, Xiaodong, 2023. "Proposal and investigation of a high-efficiency coal-fired power generation system enabled by chemical recuperative supercritical water coal gasification," Energy, Elsevier, vol. 267(C).
    2. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).
    3. Liu, Jia & Hu, Nan & Fan, Li-Wu, 2022. "Optimal design and thermodynamic analysis on the hydrogen oxidation reactor in a combined hydrogen production and power generation system based on coal gasification in supercritical water," Energy, Elsevier, vol. 238(PB).
    4. Guo, Shenghui & Wang, Yu & Shang, Fei & Yi, Lei & Chen, Yunan & Chen, Bin & Guo, Liejin, 2023. "Thermodynamic analysis of the series system for the supercritical water gasification of coal-water slurry," Energy, Elsevier, vol. 283(C).
    5. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    6. Benim, Ali Cemal & Pfeiffelmann, Björn & Ocłoń, Paweł & Taler, Jan, 2019. "Computational investigation of a lifted hydrogen flame with LES and FGM," Energy, Elsevier, vol. 173(C), pages 1172-1181.
    7. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    8. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    9. Cheng, Shulei & Wu, Yinyin & Chen, Hua & Chen, Jiandong & Song, Malin & Hou, Wenxuan, 2019. "Determinants of changes in electricity generation intensity among different power sectors," Energy Policy, Elsevier, vol. 130(C), pages 389-408.
    10. Liu, Shanke & Yang, Yan & Yu, Lijun & Cao, Yu & Liu, Xinyi & Yao, Anqi & Cao, Yaping, 2023. "Self-heating optimization of integrated system of supercritical water gasification of biomass for power generation using artificial neural network combined with process simulation," Energy, Elsevier, vol. 272(C).
    11. Wei, Junjie & Chen, Zhewen & Zhang, Hao & Fan, Junming & Zhang, Yuming & Zhang, Wei & Li, Jiazhou, 2024. "Energy, exergy and economic(3E) analyses of a CO2 near-zero-emission power generation system with integrated supercritical water gasification of coal and SOFC," Energy, Elsevier, vol. 301(C).
    12. Lu, Junhui & Cao, Haishan & Li, JunMing, 2020. "Energy and cost estimates for separating and capturing CO2 from CO2/H2O using condensation coupled with pressure/vacuum swing adsorption," Energy, Elsevier, vol. 202(C).
    13. Adnan, Muflih A. & Hidayat, Arif & Hossain, Mohammad M. & Muraza, Oki, 2021. "Transformation of low-rank coal to clean syngas and power via thermochemical route," Energy, Elsevier, vol. 236(C).
    14. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    15. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    16. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    17. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    18. Fu, Xintao & Zhang, Yilun & Liu, Xu & Liu, Zhan, 2024. "Stable power supply system consisting of solar, wind and liquid carbon dioxide energy storage," Renewable Energy, Elsevier, vol. 221(C).
    19. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    20. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.