IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031961.html
   My bibliography  Save this article

Tuning and optimization of two-phase absorbents (DEEA/AEEA/H2O) with hybrid phase splitter (n-butanol/DEEA) for several properties: Carbon capture, phase separation, physical properties

Author

Listed:
  • Jin, Lijian
  • Hou, Xueyan
  • Zhan, Lingxiao
  • Hou, Dawei
  • Gu, Lina
  • Zhang, Daguang
  • Shen, Jianchong
  • Zheng, Zhihao
  • Lv, Chao
  • Liu, Shaoqing
  • Yang, Linjun

Abstract

In this study, we examined the impacts of complete and partial substitution of DEEA with physical solvents (n-butanol) on the performance of AEEA/H2O absorption, regeneration, and phase separation. The higher hydrophobicity (log P) of n-butanol, as a phase splitter, expedites the separation process from the AEEA-CO2 product. Through additional refinement of the mass ratio between n-butanol and DEEA, it was observed that substituting a small portion of DEEA with n-butanol had negligible impact on the absorption capacity and enrichment of the enriched phase. However, it significantly reduced the phase separation time between the two solvent phases. Furthermore, an increase in n-butanol concentration can enhance cyclic loading. On the other hand, it reduces the production of AEEACOO−/DEEAH+, which is more stable compared with AEEACOO−/AEEAH+. Molecular dynamics simulations revealed that n-butanol can modulate the reduction of water molecules surrounding AEEA, creating a lower water molecule environment, which improves the absorption rate of the absorbent in the pre-absorption phase. The addition of a low concentration of n-butanol improves the initial absorption rate, phase separation performance, circulation capacity, and further reduces the regeneration energy of the absorption solution without compromising the CO2 loading and regeneration energy.

Suggested Citation

  • Jin, Lijian & Hou, Xueyan & Zhan, Lingxiao & Hou, Dawei & Gu, Lina & Zhang, Daguang & Shen, Jianchong & Zheng, Zhihao & Lv, Chao & Liu, Shaoqing & Yang, Linjun, 2024. "Tuning and optimization of two-phase absorbents (DEEA/AEEA/H2O) with hybrid phase splitter (n-butanol/DEEA) for several properties: Carbon capture, phase separation, physical properties," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031961
    DOI: 10.1016/j.energy.2023.129802
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129802?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Lidong & Fang, Jie & Ma, Haojun & Wang, Chuhuan & Wang, Rujie & Li, Qiangwei & Zhang, Shihan, 2023. "Super-low energy consuming CO2 capture triggered by weak hydrogen bonds in solid-liquid phase separation," Energy, Elsevier, vol. 272(C).
    2. Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
    3. Shen, Yao & Jiang, Chenkai & Zhang, Shihan & Chen, Jun & Wang, Lidong & Chen, Jianmeng, 2018. "Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship," Applied Energy, Elsevier, vol. 230(C), pages 726-733.
    4. Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
    5. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    6. Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
    7. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    8. Wang, Lidong & Yu, Songhua & Li, Qiangwei & Zhang, Yifeng & An, Shanlong & Zhang, Shihan, 2018. "Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics," Applied Energy, Elsevier, vol. 228(C), pages 568-576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaobin & Liu, Chao & Zhang, Jie & Fan, Yinming & Zhu, Yinian & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Hongxiang & Zhu, Zongqiang, 2023. "Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator," Energy, Elsevier, vol. 270(C).
    2. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    3. Li, Qiangwei & Huang, Xin & Li, Nuo & Qi, Tieyue & Wang, Rujie & Wang, Lidong & An, Shanlong, 2024. "Energy-efficient biphasic solvents for industrial CO2 capture: Absorption mechanism and stability characteristics," Energy, Elsevier, vol. 293(C).
    4. Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
    5. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    6. Shen, Yao & Chen, Han & Wang, Junliang & Zhang, Shihan & Jiang, Chenkai & Ye, Jiexu & Wang, Lidong & Chen, Jianmeng, 2020. "Two-stage interaction performance of CO2 absorption into biphasic solvents: Mechanism analysis, quantum calculation and energy consumption," Applied Energy, Elsevier, vol. 260(C).
    7. Wang, Rujie & Zhao, Huajun & Yang, Xiaotong & Qi, Cairao & Zhao, Haonan & Zhang, Shihan & Li, Qiangwei & Li, Ping & Wang, Lidong, 2023. "Energy-efficient non-aqueous biphasic solvent for carbon capture: Absorption mechanism, phase evolution process, and non-corrosiveness," Energy, Elsevier, vol. 281(C).
    8. Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
    9. Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
    10. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    11. Wang, Rujie & Liu, Shanshan & Li, Qiangwei & Zhang, Shihan & Wang, Lidong & An, Shanlong, 2021. "CO2 capture performance and mechanism of blended amine solvents regulated by N-methylcyclohexyamine," Energy, Elsevier, vol. 215(PB).
    12. Zhao, Huajun & Liu, Jingyi & Cheng, Shuaiqing & Wang, Rujie & Li, Qiangwei & An, Shanlong & Zhang, Shihan & Wang, Lidong, 2024. "Enhancing low-temperature desorption performance toward energy-saving CO2 capture via the multifunctional design of diethylethanolamine-based biphasic solvents," Energy, Elsevier, vol. 307(C).
    13. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    14. Hu, Hangtian & Fang, Mengxiang & Liu, Fei & Wang, Tao & Xia, Zhixiang & Zhang, Wei & Ge, Chunliang & Yuan, Jingjuan, 2022. "Novel alkanolamine-based biphasic solvent for CO2 capture with low energy consumption and phase change mechanism analysis," Applied Energy, Elsevier, vol. 324(C).
    15. Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
    16. Zhang, Weifeng & Xu, Yuanlong & Wang, Qiuhua, 2022. "Coupled CO2 absorption and mineralization with low-concentration monoethanolamine," Energy, Elsevier, vol. 241(C).
    17. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    18. Liu, Xuebing & Niu, Xiaowei & Zhan, Guoxiong & Xing, Lei & Huang, Zhoulan & Yuan, Bingling & Peng, Yue & Chen, Zhen & Li, Junhua, 2024. "Dynamic phase-splitting behaviour of biphasic solvent for carbon capture in a novel annular phase separator," Applied Energy, Elsevier, vol. 360(C).
    19. Yin, Xin & Shen, Shufeng, 2023. "Water-lean monophasic absorbents containing secondary alkanolamines and dimethyl sulfoxide for energy-efficient CO2 capture," Energy, Elsevier, vol. 281(C).
    20. Yanjie Xu & Mengxiang Fang & Qi Yang & Zhixiang Xia & Hai Yu & Tao Wang & Kexian Chen & Graeme Puxty, 2021. "Diamine based water‐lean CO2 solvent with extra high cyclic capacity and low viscosity," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 828-836, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.