IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031602.html
   My bibliography  Save this article

Experimental studies on CO2-thermal plasma gasification of refused derived fuel feedstock for clean syngas production

Author

Listed:
  • Mallick, Roni
  • Vairakannu, Prabu

Abstract

In the cycle of waste generation and management, the recovery of energy from solid wastes through highly efficient and low pollutant technology is a promising way. Hence, the current study focuses on clean syngas production via CO2-plasma gasification of a solid waste termed as refused derived fuel (RDF). The performance of feed rate, gas flow rate and plasma power on the syngas concentration, yield and cold gas efficiency (CGE) is studied. The high-quality syngas with H2 (42.6 vol%), CO (44.06 vol%) content possessing a lower heating value of 13.95 MJ/m3 is obtained with a cold gas efficiency (CGE) of 39.60 % by utilizing a maximal power of plasma torch (1.6 kW). However, with optimum process parameters, a higher CGE of 49.90 % is obtained. The obtained liquid oil with LHV of 30.59 MJ/kg could be used in boilers, diesel engines, etc., while the residue containing TiO2, CaAl4O7, MgCO3, etc. has healthcare, paints, cement industry, etc. applications upon further enrichment. The reaction mechanism of RDF to syngas and other products under plasma conditions is also proposed. Finally, an empirical correlation is developed to predict the composition of each component, calorific value and CGE of the syngas with the experimental results using SPSS software.

Suggested Citation

  • Mallick, Roni & Vairakannu, Prabu, 2024. "Experimental studies on CO2-thermal plasma gasification of refused derived fuel feedstock for clean syngas production," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031602
    DOI: 10.1016/j.energy.2023.129766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129766?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arif, Muhammad & Li, Yuxi & El-Dalatony, Marwa M. & Zhang, Chunjiang & Li, Xiangkai & Salama, El-Sayed, 2021. "A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal," Renewable Energy, Elsevier, vol. 163(C), pages 1973-1982.
    2. Jagodzińska, Katarzyna & Mroczek, Kazimierz & Nowińska, Katarzyna & Gołombek, Klaudiusz & Kalisz, Sylwester, 2019. "The impact of additives on the retention of heavy metals in the bottom ash during RDF incineration," Energy, Elsevier, vol. 183(C), pages 854-868.
    3. Zhang, Qinglin & Dor, Liran & Fenigshtein, Dikla & Yang, Weihong & Blasiak, Wlodzmierz, 2012. "Gasification of municipal solid waste in the Plasma Gasification Melting process," Applied Energy, Elsevier, vol. 90(1), pages 106-112.
    4. Shie, Je-Lueng & Chen, Li-Xun & Lin, Kae-Long & Chang, Ching-Yuan, 2014. "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste," Energy, Elsevier, vol. 66(C), pages 82-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, C. & Boré, A. & Liu, X.W. & Cui, J.C. & Wang, P. & Liu, X. & Chen, G.Y. & Liu, B. & Ma, W.C. & Lou, Z.Y. & Tao, Y. & Bary, A., 2022. "Modeling the impact of some independent parameters on the syngas characteristics during plasma gasification of municipal solid waste using artificial neural network and stepwise linear regression meth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    3. Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.
    4. Leesing, Ratanaporn & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves," Renewable Energy, Elsevier, vol. 185(C), pages 47-60.
    5. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    6. Shie, Je-Lueng & Chen, Li-Xun & Lin, Kae-Long & Chang, Ching-Yuan, 2014. "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste," Energy, Elsevier, vol. 66(C), pages 82-89.
    7. Rutberg, Philip G. & Kuznetsov, Vadim A. & Serba, Evgeny O. & Popov, Sergey D. & Surov, Alexander V. & Nakonechny, Ghennady V. & Nikonov, Alexey V., 2013. "Novel three-phase steam–air plasma torch for gasification of high-caloric waste," Applied Energy, Elsevier, vol. 108(C), pages 505-514.
    8. Leesing, Ratanaporn & Somdee, Theerasak & Siwina, Siraprapha & Ngernyen, Yuvarat & Fiala, Khanittha, 2022. "Production of 2G and 3G biodiesel, yeast oil, and sulfonated carbon catalyst from waste coconut meal: An integrated cascade biorefinery approach," Renewable Energy, Elsevier, vol. 199(C), pages 1093-1104.
    9. Michele Corneille Matchim Kamdem & Aymard Didier Tamafo Fouegue & Nanjun Lai, 2023. "A Comprehensive Study on DES Pretreatment Application to Microalgae for Enhanced Lipid Recovery Suitable for Biodiesel Production: Combined Experimental and Theoretical Investigations," Energies, MDPI, vol. 16(9), pages 1-20, April.
    10. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Integrated Circulating Fluidized Bed Gasification System for Sustainable Municipal Solid Waste Management: Energy Production and Heat Recovery," Energies, MDPI, vol. 16(13), pages 1-23, July.
    12. Jie Ma & Ming Zhang & Jianhua Wu & Qiwei Yang & Guangdong Wen & Baogen Su & Qilong Ren, 2017. "Hydropyrolysis of n- Hexane and Toluene to Acetylene in Rotating-Arc Plasma," Energies, MDPI, vol. 10(7), pages 1-12, July.
    13. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    14. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    15. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    16. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    17. Rutberg, Philip G. & Kuznetsov, Vadim A. & Popov, Victor E. & Popov, Sergey D. & Surov, Alexander V. & Subbotin, Dmitry I. & Bratsev, Alexander N., 2015. "Conversion of methane by CO2+H2O+CH4 plasma," Applied Energy, Elsevier, vol. 148(C), pages 159-168.
    18. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    19. Ming Zhang & Jie Ma & Baogen Su & Guangdong Wen & Qiwei Yang & Qilong Ren, 2017. "Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene," Energies, MDPI, vol. 10(4), pages 1-13, April.
    20. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.