IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp505-514.html
   My bibliography  Save this article

Novel three-phase steam–air plasma torch for gasification of high-caloric waste

Author

Listed:
  • Rutberg, Philip G.
  • Kuznetsov, Vadim A.
  • Serba, Evgeny O.
  • Popov, Sergey D.
  • Surov, Alexander V.
  • Nakonechny, Ghennady V.
  • Nikonov, Alexey V.

Abstract

Research results are presented for an AC electric arc that burns a mixture of steam and air in a three-phase high-voltage plasma torch and can be implemented to produce plasma for plastic waste gasification. The dependences of electric parameters on the ratio of the steam to air mass flows (H2O/air ∼1–6) at an approximately constant total mass flow of the plasma-forming gas are obtained during several experiments. During the experiments, the arc parameters were as follows: voltage drop of 1.0–1.8kV, current of ∼28.5A and power of ∼52–86kW. The thermal efficiency of the plasma torch was ∼94–95%. CCD cameras operating at 4000fps were used to determine the average discharge length of ∼798mm. Photography with a high shutter speed (1/8000s) was used to determine the average arc diameter (∼4.47mm). Arc temperatures were calculated (10,000–11,500K) using the thermodynamic equilibrium approach. Experimental results indicate that increases in the steam content of the steam–air plasma lead to a reduction of the arc’s temperature and electrical conductivity. Using an equilibrium approach, the main parameters of plasma gasification were estimated: syngas yield (3.62–3.48m3/kg), composition (H2 – 55.5–62.5, CO – 32.8–34.1vol.%) and energy consumption (11.0–12.3MJ/kg).

Suggested Citation

  • Rutberg, Philip G. & Kuznetsov, Vadim A. & Serba, Evgeny O. & Popov, Sergey D. & Surov, Alexander V. & Nakonechny, Ghennady V. & Nikonov, Alexey V., 2013. "Novel three-phase steam–air plasma torch for gasification of high-caloric waste," Applied Energy, Elsevier, vol. 108(C), pages 505-514.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:505-514
    DOI: 10.1016/j.apenergy.2013.03.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913002481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorrell, Steve & Speirs, Jamie & Bentley, Roger & Miller, Richard & Thompson, Erica, 2012. "Shaping the global oil peak: A review of the evidence on field sizes, reserve growth, decline rates and depletion rates," Energy, Elsevier, vol. 37(1), pages 709-724.
    2. Zhang, Qinglin & Dor, Liran & Zhang, Lan & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Performance analysis of municipal solid waste gasification with steam in a Plasma Gasification Melting reactor," Applied Energy, Elsevier, vol. 98(C), pages 219-229.
    3. Umeki, Kentaro & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Analysis of an updraft biomass gasifier with high temperature steam using a numerical model," Applied Energy, Elsevier, vol. 90(1), pages 38-45.
    4. Umeki, Kentaro & Yamamoto, Kouichi & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "High temperature steam-only gasification of woody biomass," Applied Energy, Elsevier, vol. 87(3), pages 791-798, March.
    5. Glen P. Peters & Gregg Marland & Corinne Le Quéré & Thomas Boden & Josep G. Canadell & Michael R. Raupach, 2012. "Rapid growth in CO2 emissions after the 2008–2009 global financial crisis," Nature Climate Change, Nature, vol. 2(1), pages 2-4, January.
    6. Namioka, Tomoaki & Saito, Atsushi & Inoue, Yukiharu & Park, Yeongsu & Min, Tai-jin & Roh, Seon-ah & Yoshikawa, Kunio, 2011. "Hydrogen-rich gas production from waste plastics by pyrolysis and low-temperature steam reforming over a ruthenium catalyst," Applied Energy, Elsevier, vol. 88(6), pages 2019-2026, June.
    7. Chen, Chih-Jung & Hung, Chen-I. & Chen, Wei-Hsin, 2012. "Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier," Applied Energy, Elsevier, vol. 100(C), pages 218-228.
    8. Zhang, Qinglin & Dor, Liran & Fenigshtein, Dikla & Yang, Weihong & Blasiak, Wlodzmierz, 2012. "Gasification of municipal solid waste in the Plasma Gasification Melting process," Applied Energy, Elsevier, vol. 90(1), pages 106-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    2. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    3. Du, ChangMing & Mo, JianMin & Tang, Jun & Huang, DongWei & Mo, ZhiXing & Wang, QingKun & Ma, ShiZhe & Chen, ZhongJie, 2014. "Plasma reforming of bio-ethanol for hydrogen rich gas production," Applied Energy, Elsevier, vol. 133(C), pages 70-79.
    4. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    5. Rutberg, Philip G. & Kuznetsov, Vadim A. & Popov, Victor E. & Popov, Sergey D. & Surov, Alexander V. & Subbotin, Dmitry I. & Bratsev, Alexander N., 2015. "Conversion of methane by CO2+H2O+CH4 plasma," Applied Energy, Elsevier, vol. 148(C), pages 159-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rutberg, Philip G. & Kuznetsov, Vadim A. & Popov, Victor E. & Popov, Sergey D. & Surov, Alexander V. & Subbotin, Dmitry I. & Bratsev, Alexander N., 2015. "Conversion of methane by CO2+H2O+CH4 plasma," Applied Energy, Elsevier, vol. 148(C), pages 159-168.
    2. Zhang, Yuming & Yu, Deping & Li, Wangliang & Gao, Shiqiu & Xu, Guangwen & Zhou, Huaqun & Chen, Jing, 2013. "Fundamental study of cracking gasification process for comprehensive utilization of vacuum residue," Applied Energy, Elsevier, vol. 112(C), pages 1318-1325.
    3. Chen, Chih-Jung & Hung, Chen-I. & Chen, Wei-Hsin, 2012. "Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier," Applied Energy, Elsevier, vol. 100(C), pages 218-228.
    4. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    5. Shie, Je-Lueng & Chen, Li-Xun & Lin, Kae-Long & Chang, Ching-Yuan, 2014. "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste," Energy, Elsevier, vol. 66(C), pages 82-89.
    6. Li, Xian & Shen, Ye & Wei, Liping & He, Chao & Lapkin, Alexei A. & Lipiński, Wojciech & Dai, Yanjun & Wang, Chi-Hwa, 2020. "Hydrogen production of solar-driven steam gasification of sewage sludge in an indirectly irradiated fluidized-bed reactor," Applied Energy, Elsevier, vol. 261(C).
    7. Font Palma, Carolina, 2013. "Modelling of tar formation and evolution for biomass gasification: A review," Applied Energy, Elsevier, vol. 111(C), pages 129-141.
    8. Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
    9. Jie Ma & Ming Zhang & Jianhua Wu & Qiwei Yang & Guangdong Wen & Baogen Su & Qilong Ren, 2017. "Hydropyrolysis of n- Hexane and Toluene to Acetylene in Rotating-Arc Plasma," Energies, MDPI, vol. 10(7), pages 1-12, July.
    10. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    11. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    12. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    13. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    15. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    16. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    17. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    18. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    19. Yueshi Wu & Weihong Yang & Wlodzimierz Blasiak, 2014. "Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass," Energies, MDPI, vol. 7(4), pages 1-16, April.
    20. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:505-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.