IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp854-868.html
   My bibliography  Save this article

The impact of additives on the retention of heavy metals in the bottom ash during RDF incineration

Author

Listed:
  • Jagodzińska, Katarzyna
  • Mroczek, Kazimierz
  • Nowińska, Katarzyna
  • Gołombek, Klaudiusz
  • Kalisz, Sylwester

Abstract

Up to now, a few studies on the efficiency of heavy metal(-oid)s capture by a sorbent directly mixed with fuel, have been performed. For this reason, the main objective of the study is to determine whether or not such a solution is effective when RDF is incinerated. The paper presents a two-step analysis of the impact of three sorbents (ammonium sulphate, kaolinite and halloysite) in three dosages (2, 4 and 8 wt%) on heavy metal(-oid)s retention in the bottom ash. 12 heavy metal(-oid)s were taken into consideration - As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, V and Zn. Samples were incinerated in a lab-scale tubular reactor at two temperatures - 900 °C and 1100 °C. The first step of investigation constitutes ICP analysis of heavy metal(-oid)s content in the bottom ash, coupled with SEM/EDS analysis. Afterwards, the second step was to determine the stability of formed additive-heavy metal(-oid)s complexes via leachability tests in neutral and acid environments. The performed research has shown that ammonium sulphate is effective in Cr, Cu and Hg capture, halloysite – in Cd, Co, V and Mn capture, whereas kaolinite – in Pb capture.

Suggested Citation

  • Jagodzińska, Katarzyna & Mroczek, Kazimierz & Nowińska, Katarzyna & Gołombek, Klaudiusz & Kalisz, Sylwester, 2019. "The impact of additives on the retention of heavy metals in the bottom ash during RDF incineration," Energy, Elsevier, vol. 183(C), pages 854-868.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:854-868
    DOI: 10.1016/j.energy.2019.06.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hernik, Bartłomiej, 2015. "Numerical calculations of the WR-40 boiler with a furnace jet boiler system," Energy, Elsevier, vol. 92(P1), pages 54-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mlonka-Mędrala, Agata & Dziok, Tadeusz & Magdziarz, Aneta & Nowak, Wojciech, 2021. "Composition and properties of fly ash collected from a multifuel fluidized bed boiler co-firing refuse derived fuel (RDF) and hard coal," Energy, Elsevier, vol. 234(C).
    2. Mallick, Roni & Vairakannu, Prabu, 2024. "Experimental studies on CO2-thermal plasma gasification of refused derived fuel feedstock for clean syngas production," Energy, Elsevier, vol. 288(C).
    3. Piotr Sakiewicz & Marcin Lutyński & Jakub Sobieraj & Krzysztof Piotrowski & Francesco Miccio & Sylwester Kalisz, 2022. "Adsorption of CO 2 on In Situ Functionalized Straw Burning Ashes—An Innovative, Circular Economy-Based Concept for Limitation of Industrial-Scale Greenhouse Gas Emission," Energies, MDPI, vol. 15(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:854-868. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.