IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030220.html
   My bibliography  Save this article

Study on the dynamic characteristics of a concentrated solar power plant with the supercritical CO2 Brayton cycle coupled with different thermal energy storage methods

Author

Listed:
  • Li, Meng-Jie
  • Li, Ming-Jia
  • Jiang, Rui
  • Du, Shen
  • Li, Xiao-Yue

Abstract

The paper aims to study the impact of Thermal Energy Storage (TES) technology on the dynamic characteristics of Concentrated Solar Power (CSP). An integrated dynamic model of a CSP plant is firstly established, which combines the concentrating system, the TES system, and S–CO2 Brayton power cycle system. Three TES alternatives are considered: two-tank molten salt TES (TT-TES), packed-bed TES with solid fillers (PBS-TES), packed-bed TES with phase change materials (PBP-TES). Using this integrated dynamic model, the thermal performance and economic feasibility of different TES technologies applied to CSP are compared and analyzed. The results indicate that utilization of packed-bed TES primarily impacts the optical efficiency of the heliostat field and the thermal efficiency of the power cycle, while having minimal effect on the receiver's thermal efficiency. Furthermore, during the vernal equinox, the daily average system efficiencies of CSP configurations integrating TT-TES, PBS-TES, PBP-TES technologies are 26.0 %, 25.5 %, and 24.5 %, respectively. Meanwhile, the use of packed-bed TES systems significantly reduces the material cost of the TES. In comparison to the TT-TES, the PBP-TES and the PBS-TES can reduce cost by 21.2 % and 42.3 %, respectively, and decrease TES volume by 83.0 % and 63.8 %, respectively.

Suggested Citation

  • Li, Meng-Jie & Li, Ming-Jia & Jiang, Rui & Du, Shen & Li, Xiao-Yue, 2024. "Study on the dynamic characteristics of a concentrated solar power plant with the supercritical CO2 Brayton cycle coupled with different thermal energy storage methods," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030220
    DOI: 10.1016/j.energy.2023.129628
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jia & Chen, Haisheng & Xu, Yujie & Wang, Liang & Tan, Chunqing, 2014. "A solar energy storage and power generation system based on supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 64(C), pages 43-51.
    2. Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
    3. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    4. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    5. Elfeky, Karem Elsayed & Mohammed, Abubakar Gambo & Wang, Qiuwang, 2022. "Thermo-economic evaluation of PCM layer thickness change on the performance of the hybrid heat storage tank for concentrating solar power plants," Energy, Elsevier, vol. 253(C).
    6. Liu, Ming & Jacob, Rhys & Belusko, Martin & Riahi, Soheila & Bruno, Frank, 2021. "Techno-economic analysis on the design of sensible and latent heat thermal energy storage systems for concentrated solar power plants," Renewable Energy, Elsevier, vol. 178(C), pages 443-455.
    7. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    8. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    9. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    10. Li, Meng-Jie & Qiu, Yu & Li, Ming-Jia, 2018. "Cyclic thermal performance analysis of a traditional Single-Layered and of a novel Multi-Layered Packed-Bed molten salt Thermocline Tank," Renewable Energy, Elsevier, vol. 118(C), pages 565-578.
    11. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    12. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yuanting & Li, Qing & Qiu, Yu, 2024. "Real-time and annual performance evaluation of an ultra-high-temperature concentrating solar collector by developing an MCRT-CFD-ANN coupled model," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    2. Li, Meng-Jie & Li, Ming-Jia & Xue, Xiao-Dai & Li, Dong, 2022. "Optimization and design criterion of the shell-and-tube thermal energy storage with cascaded PCMs under the constraint of outlet threshold temperature," Renewable Energy, Elsevier, vol. 181(C), pages 1371-1385.
    3. Jiang, Rui & Li, Ming-Jia & Wang, Wen-Qi & Li, Meng-Jie & Ma, Teng, 2024. "A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction," Energy, Elsevier, vol. 292(C).
    4. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    5. Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
    6. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    7. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    8. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    9. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    10. Ma, Teng & Li, Ming-Jia & Xu, Hang, 2024. "Thermal energy storage capacity configuration and energy distribution scheme for a 1000MWe S–CO2 coal-fired power plant to realize high-efficiency full-load adjustability," Energy, Elsevier, vol. 294(C).
    11. Wang, Wen-Qi & Qiu, Yu & Li, Ming-Jia & He, Ya-Ling & Cheng, Ze-Dong, 2020. "Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower," Applied Energy, Elsevier, vol. 272(C).
    12. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    13. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    14. ELSihy, ELSaeed Saad & Wang, Xiaohui & Xu, Chao & Du, Xiaoze, 2021. "Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants," Renewable Energy, Elsevier, vol. 172(C), pages 1417-1432.
    15. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    16. Wang, Wen-Qi & He, Ya-Ling & Jiang, Rui, 2022. "A multi-scale solar receiver with peak receiver efficiency over 90% at 720 °C for the next-generation solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 714-723.
    17. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Cheng, Ze-Dong & He, Ya-Ling, 2022. "A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower," Energy, Elsevier, vol. 245(C).
    18. ELSihy, ELSaeed Saad & Xu, Chao & Du, Xiaoze, 2022. "Cyclic performance of cascaded latent heat thermocline energy storage systems for high-temperature applications," Energy, Elsevier, vol. 239(PC).
    19. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Cui, Jie & Yang, Xueming & Chen, Jianing & Su, Hui & Xie, Jianfei, 2024. "Multi-perspective analysis of adiabatic compressed air energy storage system with cascaded packed bed latent heat storage under variable conditions," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.