IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220323884.html
   My bibliography  Save this article

Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant

Author

Listed:
  • Ma, Zhao
  • Li, Ming-Jia
  • Zhang, K. Max
  • Yuan, Fan

Abstract

Packed-bed thermal energy storage (PBTES) has advantage of being relatively low cost, but suffers from low utility factor, compared with two-tank thermal energy storage (TTES). This paper proposes two new designs of hybrid thermal energy storage system (HTESS), consisting of PBTES and TTES, and corresponding operation strategies: HTESS-TS for thermocline storage and HTESS-OTC for outlet temperature control. Firstly, structures and operation strategies of HTESS-TS and HTESS-OTC are described in detail. Then, thermal and economic performances of HTESS and single-tank thermal energy storage system (STESS) only containing PBTES in stand-alone state are compared. Next, effects of cut-off temperature and thermal capacity of TTES are analyzed. Finally, under realistic solar radiation, annual performance of concentrated solar power plant (CSP) with different thermal energy storage systems are compared. Results show that compared with STESS, utility factors of HTESS-TS and HTESS-OTC are improved by 12.5% and 22.1% respectively. Meanwhile, unit cost of HTESS-OTC is 8.6% lower than that of STESS. In addition, for a broad range of outlet temperature limits, HTESS-OTC can maintain more stable outlet temperature, higher utility factor than STESS. Compared with STESS, annual generated electricity induced by HTESS-TS and HTESS-OTC increase by 9.8% and 14.1% respectively.

Suggested Citation

  • Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323884
    DOI: 10.1016/j.energy.2020.119281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220323884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nithyanandam, K. & Pitchumani, R., 2014. "Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage," Energy, Elsevier, vol. 64(C), pages 793-810.
    2. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system," Renewable Energy, Elsevier, vol. 48(C), pages 1-9.
    3. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    4. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
    5. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
    6. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    7. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    8. Ma, Zhao & Yang, Wei-Wei & Li, Ming-Jia & He, Ya-Ling, 2018. "High efficient solar parabolic trough receiver reactors combined with phase change material for thermochemical reactions," Applied Energy, Elsevier, vol. 230(C), pages 769-783.
    9. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    10. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    11. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    12. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    13. Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.
    14. Li, Meng-Jie & Qiu, Yu & Li, Ming-Jia, 2018. "Cyclic thermal performance analysis of a traditional Single-Layered and of a novel Multi-Layered Packed-Bed molten salt Thermocline Tank," Renewable Energy, Elsevier, vol. 118(C), pages 565-578.
    15. Flueckiger, Scott M. & Iverson, Brian D. & Garimella, Suresh V. & Pacheco, James E., 2014. "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Elsevier, vol. 113(C), pages 86-96.
    16. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    17. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    18. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    19. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Tellez, Felix M., 2013. "Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends," Applied Energy, Elsevier, vol. 112(C), pages 274-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shagdar, Enkhbayar & Shuai, Yong & Lougou, Bachirou Guene & Mustafa, Azeem & Choidorj, Dashpuntsag & Tan, Heping, 2022. "New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis," Energy, Elsevier, vol. 238(PC).
    2. Ashok Bhansali & Namala Narasimhulu & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Dayanand Lal Narayan, 2023. "A Review on Sustainable Energy Sources Using Machine Learning and Deep Learning Models," Energies, MDPI, vol. 16(17), pages 1-18, August.
    3. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    4. Quintana, Jose J. & Ramos, Alejandro & Diaz, Moises & Nuez, Ignacio, 2021. "Energy efficiency analysis as a function of the working voltages in supercapacitors," Energy, Elsevier, vol. 230(C).
    5. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    6. Wanruo Lou & Lingai Luo & Yuchao Hua & Yilin Fan & Zhenyu Du, 2021. "A Review on the Performance Indicators and Influencing Factors for the Thermocline Thermal Energy Storage Systems," Energies, MDPI, vol. 14(24), pages 1-19, December.
    7. Cao, Wenzhi & Xiao, Jiang-Wen & Cui, Shi-Chang & Liu, Xiao-Kang, 2022. "An efficient and economical storage and energy sharing model for multiple multi-energy microgrids," Energy, Elsevier, vol. 244(PB).
    8. Lou, Wanruo & Xie, Baoshan & Aubril, Julien & Fan, Yilin & Luo, Lingai & Arrivé, Arnaud, 2023. "Optimized flow distributor for stabilized thermal stratification in a single-medium thermocline storage tank: A numerical and experimental study," Energy, Elsevier, vol. 263(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    2. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Wang, Wei & Shuai, Yong & Qiu, Jun & He, Xibo & Hou, Yicheng, 2022. "Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors," Renewable Energy, Elsevier, vol. 183(C), pages 251-266.
    4. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    5. Li, Meng-Jie & Li, Ming-Jia & Jiang, Rui & Du, Shen & Li, Xiao-Yue, 2024. "Study on the dynamic characteristics of a concentrated solar power plant with the supercritical CO2 Brayton cycle coupled with different thermal energy storage methods," Energy, Elsevier, vol. 288(C).
    6. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    7. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    8. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    9. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    10. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    11. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    12. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    13. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    14. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    15. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. ELSihy, ELSaeed Saad & Wang, Xiaohui & Xu, Chao & Du, Xiaoze, 2021. "Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants," Renewable Energy, Elsevier, vol. 172(C), pages 1417-1432.
    17. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    18. Fadi Alnaimat & Yasir Rashid, 2019. "Thermal Energy Storage in Solar Power Plants: A Review of the Materials, Associated Limitations, and Proposed Solutions," Energies, MDPI, vol. 12(21), pages 1-19, October.
    19. Li, Meng-Jie & Li, Ming-Jia & Xue, Xiao-Dai & Li, Dong, 2022. "Optimization and design criterion of the shell-and-tube thermal energy storage with cascaded PCMs under the constraint of outlet threshold temperature," Renewable Energy, Elsevier, vol. 181(C), pages 1371-1385.
    20. Ortega-Fernández, Iñigo & Hernández, Ana Belén & Wang, Yang & Bielsa, Daniel, 2021. "Performance assessment of an oil-based packed bed thermal energy storage unit in a demonstration concentrated solar power plant," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220323884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.