IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp761-773.html
   My bibliography  Save this article

Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power

Author

Listed:
  • Zhao, Bing-chen
  • Cheng, Mao-song
  • Liu, Chang
  • Dai, Zhi-min

Abstract

Molten-salt packed-bed thermocline thermal energy storage (TES) is identified to be a cost-competitive TES type for concentrating solar power (CSP). The present study reveals the system-level cyclic thermal characteristics of the molten-salt packed-bed TES with typical configurations on two levels of investigation, based on a one-dimensional enthalpy-method dispersed-concentric (D-C) model. Firstly, a three-stage operation scheme is proposed to evaluate the thermal performance of the introduced partial charge cycles and the subsequent full charge cycles, under ideal operating conditions. The ‘partial charge effect’ of the packed-bed TES is identified by evaluating the variations in thermocline development and energy storage/release capacity. The results show that the introduced partial charge cycles can generally lead to a thermocline degradation, and then impact the energy store/release capacity in the subsequent full charge cycles. The configurations containing encapsulated PCMs are of greater resistance and stronger recoverability to the variation in energy storage/release capacity. Then the study is extended to investigate the thermal performance of a 100MWe CSP plant integrated with a well-sized packed-bed TES system, over a 14-day practical operation based on variable energy collections. Deviations between the designed and practical energy store/release capacity of the systems are evaluated. The results indicate that of the sensible-heat and the single-layered latent-heat packed-bed TES present significant shortages in energy storage capacity during the operation, which can lead to energy collection discards. Overall, the obtained results present a new perspective to evaluate the availability of the packed-bed TES system for CSP plants.

Suggested Citation

  • Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:761-773
    DOI: 10.1016/j.apenergy.2017.03.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mawire, Ashmore & Taole, Simeon H., 2011. "A comparison of experimental thermal stratification parameters for an oil/pebble-bed thermal energy storage (TES) system during charging," Applied Energy, Elsevier, vol. 88(12), pages 4766-4778.
    2. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
    3. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    4. Nithyanandam, K. & Pitchumani, R., 2014. "Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage," Energy, Elsevier, vol. 64(C), pages 793-810.
    5. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Parametric study and standby behavior of a packed-bed molten salt thermocline thermal storage system," Renewable Energy, Elsevier, vol. 48(C), pages 1-9.
    6. Wang, Letian & Yang, Zhen & Duan, Yuanyuan, 2015. "Influence of flow distribution on the thermal performance of dual-media thermocline energy storage systems," Applied Energy, Elsevier, vol. 142(C), pages 283-292.
    7. Yang, Zhen & Garimella, Suresh V., 2013. "Cyclic operation of molten-salt thermal energy storage in thermoclines for solar power plants," Applied Energy, Elsevier, vol. 103(C), pages 256-265.
    8. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    9. Xu, Chao & Wang, Zhifeng & He, Yaling & Li, Xin & Bai, Fengwu, 2012. "Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system," Applied Energy, Elsevier, vol. 92(C), pages 65-75.
    10. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    11. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    12. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    13. Peng, Hao & Li, Rui & Ling, Xiang & Dong, Huihua, 2015. "Modeling on heat storage performance of compressed air in a packed bed system," Applied Energy, Elsevier, vol. 160(C), pages 1-9.
    14. Xu, Ben & Li, Peiwen & Chan, Cholik & Tumilowicz, Eric, 2015. "General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant," Applied Energy, Elsevier, vol. 140(C), pages 256-268.
    15. Flueckiger, Scott M. & Iverson, Brian D. & Garimella, Suresh V. & Pacheco, James E., 2014. "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Elsevier, vol. 113(C), pages 86-96.
    16. Nithyanandam, K. & Pitchumani, R. & Mathur, A., 2014. "Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power," Applied Energy, Elsevier, vol. 113(C), pages 1446-1460.
    17. Peng, Qiang & Yang, Xiaoxi & Ding, Jing & Wei, Xiaolan & Yang, Jianping, 2013. "Design of new molten salt thermal energy storage material for solar thermal power plant," Applied Energy, Elsevier, vol. 112(C), pages 682-689.
    18. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    19. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    20. Flueckiger, Scott M. & Garimella, Suresh V., 2014. "Latent heat augmentation of thermocline energy storage for concentrating solar power – A system-level assessment," Applied Energy, Elsevier, vol. 116(C), pages 278-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Xiaolan & Yang, Chuntao & Lu, Jianfeng & Wang, Weilong & Ding, Jing, 2017. "The mechanism of NOx emissions from binary molten nitrate salts contacting nickel base alloy in thermal energy storage process," Applied Energy, Elsevier, vol. 207(C), pages 265-273.
    2. ELSihy, ELSaeed Saad & Wang, Xiaohui & Xu, Chao & Du, Xiaoze, 2021. "Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants," Renewable Energy, Elsevier, vol. 172(C), pages 1417-1432.
    3. Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    5. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    6. Gasia, Jaume & de Gracia, Alvaro & Peiró, Gerard & Arena, Simone & Cau, Giorgio & Cabeza, Luisa F., 2018. "Use of partial load operating conditions for latent thermal energy storage management," Applied Energy, Elsevier, vol. 216(C), pages 234-242.
    7. Ahmad, Abdalqader & Anagnostopoulos, Argyrios & Navarro, M. Elena & Maksum, Yelaman & Sharma, Shivangi & Ding, Yulong, 2024. "A comprehensive material and experimental investigation of a packed bed latent heat storage system based on waste foundry sand," Energy, Elsevier, vol. 294(C).
    8. Benitez-Guerrero, Monica & Valverde, Jose Manuel & Perejon, Antonio & Sanchez-Jimenez, Pedro E. & Perez-Maqueda, Luis A., 2018. "Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power," Applied Energy, Elsevier, vol. 210(C), pages 108-116.
    9. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    10. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    11. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    12. Li, Chuan & Li, Qi & Ding, Yulong, 2019. "Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials," Applied Energy, Elsevier, vol. 247(C), pages 374-388.
    13. Li, Meng-Jie & Li, Ming-Jia & Jiang, Rui & Du, Shen & Li, Xiao-Yue, 2024. "Study on the dynamic characteristics of a concentrated solar power plant with the supercritical CO2 Brayton cycle coupled with different thermal energy storage methods," Energy, Elsevier, vol. 288(C).
    14. Serge Nyallang Nyamsi & Ivan Tolj, 2021. "The Impact of Active and Passive Thermal Management on the Energy Storage Efficiency of Metal Hydride Pairs Based Heat Storage," Energies, MDPI, vol. 14(11), pages 1-24, May.
    15. Bernd Eppinger & Mustafa Muradi & Daniel Scharrer & Lars Zigan & Peter Bazan & Reinhard German & Stefan Will, 2021. "Simulation of the Part Load Behavior of Combined Heat Pump-Organic Rankine Cycle Systems," Energies, MDPI, vol. 14(13), pages 1-18, June.
    16. Yao, Shuting & Wang, Jiansheng & Liu, Xueling, 2021. "Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel," Applied Energy, Elsevier, vol. 298(C).
    17. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    18. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    19. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    20. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    21. Mehdi Shokrnia & Mattia Cagnoli & Roberto Grena & Antonio D’Angelo & Michela Lanchi & Roberto Zanino, 2024. "Photo-Thermal Optimization of a Parabolic Trough Collector with Arrayed Selective Coatings," Energies, MDPI, vol. 17(13), pages 1-19, June.
    22. Arena, Simone & Casti, Efisio & Gasia, Jaume & Cabeza, Luisa F. & Cau, Giorgio, 2018. "Numerical analysis of a latent heat thermal energy storage system under partial load operating conditions," Renewable Energy, Elsevier, vol. 128(PA), pages 350-361.
    23. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2016. "Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants," Applied Energy, Elsevier, vol. 178(C), pages 784-799.
    2. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2018. "System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 226(C), pages 225-239.
    3. Elfeky, K.E. & Mohammed, A.G. & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2020. "Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants," Applied Energy, Elsevier, vol. 267(C).
    4. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    5. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.
    6. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    7. ELSihy, ELSaeed Saad & Cai, Changrui & Li, Zhenpeng & Du, Xiaoze & Wang, Zuyuan, 2024. "Performance investigation on the cascaded packed bed thermal energy storage system with encapsulated nano-enhanced phase change materials for high-temperature applications," Energy, Elsevier, vol. 293(C).
    8. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    9. Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
    10. Chang, Zheshao & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng & Zhang, Qiangqiang & Liao, Zhirong & Li, Qing, 2016. "The effect of the physical boundary conditions on the thermal performance of molten salt thermocline tank," Renewable Energy, Elsevier, vol. 96(PA), pages 190-202.
    11. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    12. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    13. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    14. ELSihy, ELSaeed Saad & Wang, Xiaohui & Xu, Chao & Du, Xiaoze, 2021. "Numerical investigation on simultaneous charging and discharging process of molten-salt packed-bed thermocline storage tank employing in CSP plants," Renewable Energy, Elsevier, vol. 172(C), pages 1417-1432.
    15. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    16. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    17. Ahmed, N. & Elfeky, K.E. & Lu, Lin & Wang, Q.W., 2020. "Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications," Renewable Energy, Elsevier, vol. 152(C), pages 684-697.
    18. Li, Meng-Jie & Qiu, Yu & Li, Ming-Jia, 2018. "Cyclic thermal performance analysis of a traditional Single-Layered and of a novel Multi-Layered Packed-Bed molten salt Thermocline Tank," Renewable Energy, Elsevier, vol. 118(C), pages 565-578.
    19. Cocco, Daniele & Serra, Fabio, 2015. "Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants," Energy, Elsevier, vol. 81(C), pages 526-536.
    20. Xu, Ben & Li, Peiwen & Chan, Cholik & Tumilowicz, Eric, 2015. "General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant," Applied Energy, Elsevier, vol. 140(C), pages 256-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:761-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.