IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001566.html
   My bibliography  Save this article

A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower

Author

Listed:
  • Wang, Wen-Qi
  • Li, Ming-Jia
  • Jiang, Rui
  • Cheng, Ze-Dong
  • He, Ya-Ling

Abstract

Lumped parameter method (LPM), which neglects the change of the temperature within the cross-section of the molten salt, is widely used to predict solar receiver's steady and transient optical-thermal characteristics. To consider the influences of the temperature variation inside molten salts on the performance of solar receivers, the receiver's steady and transient thermal performance are comparatively studied by computational fluid dynamics method (CFD) and LPM. The results show that the rise time of the outlet temperature predicted by the CFD model under the start process, the change of mass flow rate, and the change of direct normal irradiance are more than two times those of the LPM model. Take the start process on spring equinox as an example, the rise time predicted by the CFD and LPM model are 52s and 22s, respectively. Therefore, the temperature distribution within the molten salt should be considered for predicting a more precise transient thermal performance of the receiver. The predicted outlet temperatures in the steady state by the two models are nearly the same, with an absolute difference less than 2.0 °C, which indicates that whether considering the temperature distribution within the molten salt does not influence receiver's steady thermal characteristics.

Suggested Citation

  • Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Cheng, Ze-Dong & He, Ya-Ling, 2022. "A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001566
    DOI: 10.1016/j.energy.2022.123253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001566
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    2. M. Caccia & M. Tabandeh-Khorshid & G. Itskos & A. R. Strayer & A. S. Caldwell & S. Pidaparti & S. Singnisai & A. D. Rohskopf & A. M. Schroeder & D. Jarrahbashi & T. Kang & S. Sahoo & N. R. Kadasala & , 2018. "Ceramic–metal composites for heat exchangers in concentrated solar power plants," Nature, Nature, vol. 562(7727), pages 406-409, October.
    3. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    4. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    5. Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
    6. López-Núñez, Oscar A. & Alfaro-Ayala, J. Arturo & Ramírez-Minguela, J.J. & Belman-Flores, J.M. & Jaramillo, O.A., 2020. "Optimization of a Linear Fresnel Reflector Applying Computational Fluid Dynamics, Entropy Generation Rate and Evolutionary Programming," Renewable Energy, Elsevier, vol. 152(C), pages 698-712.
    7. Crespi, Francesco & Toscani, Andrea & Zani, Paolo & Sánchez, David & Manzolini, Giampaolo, 2018. "Effect of passing clouds on the dynamic performance of a CSP tower receiver with molten salt heat storage," Applied Energy, Elsevier, vol. 229(C), pages 224-235.
    8. Wang, Wen-Qi & Qiu, Yu & Li, Ming-Jia & He, Ya-Ling & Cheng, Ze-Dong, 2020. "Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower," Applied Energy, Elsevier, vol. 272(C).
    9. Sánchez-González, Alberto & Santana, Domingo, 2015. "Solar flux distribution on central receivers: A projection method from analytic function," Renewable Energy, Elsevier, vol. 74(C), pages 576-587.
    10. He, Ya-Ling & Xiao, Jie & Cheng, Ze-Dong & Tao, Yu-Bing, 2011. "A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 36(3), pages 976-985.
    11. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    12. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Rui & Li, Ming-Jia & Wang, Wen-Qi & Li, Meng-Jie & Ma, Teng, 2024. "A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction," Energy, Elsevier, vol. 292(C).
    2. Wang, Wen-Qi & He, Ya-Ling & Jiang, Rui, 2022. "A multi-scale solar receiver with peak receiver efficiency over 90% at 720 °C for the next-generation solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 714-723.
    3. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    4. Su, Zixiang & Yang, Liu & Wang, Hao & Song, Jianzhong & Jiang, Weixue, 2024. "Exergoenvironmental optimization and thermoeconomic assessment of an innovative multistage Brayton cycle with dual expansion and cooling for ultra-high temperature solar power," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Hu, Yi-Huang & He, Ya-Ling, 2022. "Receiver with light-trapping nanostructured coating: A possible way to achieve high-efficiency solar thermal conversion for the next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 185(C), pages 159-171.
    2. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    3. Qiu, Yu & Xu, Yucong & Li, Qing & Wang, Jikang & Wang, Qiliang & Liu, Bin, 2021. "Efficiency enhancement of a solar trough collector by combining solar and hot mirrors," Applied Energy, Elsevier, vol. 299(C).
    4. Wang, Wen-Qi & Qiu, Yu & Li, Ming-Jia & He, Ya-Ling & Cheng, Ze-Dong, 2020. "Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower," Applied Energy, Elsevier, vol. 272(C).
    5. Qiu, Yu & Zhang, Yuanting & Li, Qing & Xu, Yucong & Wen, Zhe-Xi, 2020. "A novel parabolic trough receiver enhanced by integrating a transparent aerogel and wing-like mirrors," Applied Energy, Elsevier, vol. 279(C).
    6. Jiang, Rui & Li, Ming-Jia & Wang, Wen-Qi & Li, Meng-Jie & Ma, Teng, 2024. "A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction," Energy, Elsevier, vol. 292(C).
    7. Zhang, Yuanting & Qiu, Yu & Li, Qing & Henry, Asegun, 2022. "Optical-thermal-mechanical characteristics of an ultra-high-temperature graphite receiver designed for concentrating solar power," Applied Energy, Elsevier, vol. 307(C).
    8. Ye, Kai & Li, Qing & Zhang, Yuanting & Qiu, Yu & Liu, Bin, 2022. "An efficient receiver tube enhanced by a solar transparent aerogel for solar power tower," Energy, Elsevier, vol. 261(PB).
    9. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
    10. Zecan Tu & Daniela Piccioni Koch & Nenad Sarunac & Martin Frank & Junkui Mao, 2021. "Thermal Analysis of a Solar External Receiver Tube with a Novel Component of Guide Vanes," Energies, MDPI, vol. 14(8), pages 1-21, April.
    11. Wang, Jikang & Zhang, Yuanting & Zhang, Weichen & Qiu, Yu & Li, Qing, 2022. "Design and evaluation of a lab-scale tungsten receiver for ultra-high-temperature solar energy harvesting," Applied Energy, Elsevier, vol. 327(C).
    12. Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
    13. Haoyu Huang & Ershu Xu & Lengge Si & Qiang Zhang & Qiang Huang, 2023. "Dynamic Thermal Transport Characteristics of a Real-Time Simulation Model for a 50 MW Solar Power Tower Plant," Energies, MDPI, vol. 16(4), pages 1-16, February.
    14. Wang, Wen-Qi & He, Ya-Ling & Jiang, Rui, 2022. "A multi-scale solar receiver with peak receiver efficiency over 90% at 720 °C for the next-generation solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 714-723.
    15. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    16. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
    17. Qiu, Yu & He, Ya-Ling & Li, Peiwen & Du, Bao-Cun, 2017. "A comprehensive model for analysis of real-time optical performance of a solar power tower with a multi-tube cavity receiver," Applied Energy, Elsevier, vol. 185(P1), pages 589-603.
    18. Yu, Yinsheng & Zhao, Chenyang & Tao, Yubing & Chen, Xi & He, Ya-Ling, 2021. "Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach," Applied Energy, Elsevier, vol. 290(C).
    19. Zhu, Han-Hui & Wang, Kun & He, Ya-Ling, 2017. "Thermodynamic analysis and comparison for different direct-heated supercritical CO2 Brayton cycles integrated into a solar thermal power tower system," Energy, Elsevier, vol. 140(P1), pages 144-157.
    20. Li, Meng-Jie & Li, Ming-Jia & Jiang, Rui & Du, Shen & Li, Xiao-Yue, 2024. "Study on the dynamic characteristics of a concentrated solar power plant with the supercritical CO2 Brayton cycle coupled with different thermal energy storage methods," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.