IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030487.html
   My bibliography  Save this article

Enhancing coal-gangue object detection using GAN-based data augmentation strategy with dual attention mechanism

Author

Listed:
  • Zhang, Kefei
  • Yang, Xiaolin
  • Xu, Liang
  • Thé, Jesse
  • Tan, Zhongchao
  • Yu, Hesheng

Abstract

Coal separation based on computer vision has attracted substantial attention in recent years. However, developing reliable object detection models relies on large-scale annotated dataset, which in industrial practice is time-consuming and labor-intensive to obtain. In this paper, we propose a novel data augmentation model called dual attention deep convolutional generative adversarial network (DADCGAN) to expand dataset scale and improve object detection. For the first time, the proposed DADCGAN, which adopts DCGAN as its foundation architecture, introduces efficient channel attention and external attention mechanisms to capture essential feature information from the channel and spatial dimensions of images, respectively. Moreover, spectral normalization and two time-scale update rule strategies are incorporated to stabilize the training process. The implementation of our proposed data augmentation strategy includes two steps. First, traditional pixel transformation is used to expand an original small dataset. Then, our GAN-based data augmentation is executed to further expand the dataset by generating synthetic images. Experimental results show that our DADCGAN model achieves the lowest FID value, decreasing the FID by 21.30–71.96 % compared to other baseline GAN models, showcasing its ability to produce more realistic coal-gangue images. Finally, the data augmentation strategies are applied to the YOLOv4 model, enhancing the mAP by 9.26 %, highlighting its significance in enhancing coal-gangue object detection. These results have important implications for the development and implementation of computer vision-based technologies, enabling the realization of cleaner and more efficient coal separation methods.

Suggested Citation

  • Zhang, Kefei & Yang, Xiaolin & Xu, Liang & Thé, Jesse & Tan, Zhongchao & Yu, Hesheng, 2024. "Enhancing coal-gangue object detection using GAN-based data augmentation strategy with dual attention mechanism," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030487
    DOI: 10.1016/j.energy.2023.129654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dowson, D. C. & Landau, B. V., 1982. "The Fréchet distance between multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 450-455, September.
    2. Yang, Xiaolin & Zhang, Kefei & Ni, Chao & Cao, Hua & Thé, Jesse & Xie, Guangyuan & Tan, Zhongchao & Yu, Hesheng, 2022. "Ash determination of coal flotation concentrate by analyzing froth image using a novel hybrid model based on deep learning algorithms and attention mechanism," Energy, Elsevier, vol. 260(C).
    3. Liu, Haizhou & Mao, Lingtao & Ju, Yang & Hild, François, 2023. "Damage evolution in coal under different loading modes using advanced digital volume correlation based on X-ray computed tomography," Energy, Elsevier, vol. 275(C).
    4. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023. "Discrimination between Gaussian process models: active learning and static constructions," Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
    2. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    3. Junhao Wu & Yuan Hu & Daqing Wu & Zhengyong Yang, 2022. "An Aquatic Product Price Forecast Model Using VMD-IBES-LSTM Hybrid Approach," Agriculture, MDPI, vol. 12(8), pages 1-26, August.
    4. Tao, Ming & Yang, Zheng & Zhao, Yan & Wu, Xingyu & Wu, Chengqing, 2024. "Failure characteristics of microwave heat-treated stressed sandstone: Implications for deep rock breakage using TBM cutting," Energy, Elsevier, vol. 292(C).
    5. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    6. Knott, Martin & Smith, Cyril, 2006. "Choosing joint distributions so that the variance of the sum is small," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1757-1765, September.
    7. Rippl, Thomas & Munk, Axel & Sturm, Anja, 2016. "Limit laws of the empirical Wasserstein distance: Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 90-109.
    8. Yang, Kailing & Zhang, Xi & Luo, Haojia & Hou, Xianping & Lin, Yu & Wu, Jingyu & Yu, Liang, 2024. "Predicting energy prices based on a novel hybrid machine learning: Comprehensive study of multi-step price forecasting," Energy, Elsevier, vol. 298(C).
    9. Junjie Liu & Lang Liu, 2024. "Point and Interval Forecasting of Coal Price Adopting a Novel Decomposition Integration Model," Energies, MDPI, vol. 17(16), pages 1-17, August.
    10. Mansour, Shaza H. & Azzam, Sarah M. & Hasanien, Hany M. & Tostado-Veliz, Marcos & Alkuhayli, Abdulaziz & Jurado, Francisco, 2024. "Wasserstein generative adversarial networks-based photovoltaic uncertainty in a smart home energy management system including battery storage devices," Energy, Elsevier, vol. 306(C).
    11. Chao Zhang & Yihang Zhao & Huiru Zhao, 2022. "A Novel Hybrid Price Prediction Model for Multimodal Carbon Emission Trading Market Based on CEEMDAN Algorithm and Window-Based XGBoost Approach," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    12. Ehsani, Behdad & Pineau, Pierre-Olivier & Charlin, Laurent, 2024. "Price forecasting in the Ontario electricity market via TriConvGRU hybrid model: Univariate vs. multivariate frameworks," Applied Energy, Elsevier, vol. 359(C).
    13. Zhongzhi Lawrence He, 2018. "Comparing Asset Pricing Models: Distance-based Metrics and Bayesian Interpretations," Papers 1803.01389, arXiv.org.
    14. Xu, Mengjie & Li, Xiang & Li, Qianwen & Sun, Chuanwang, 2024. "LNBi-GRU model for coal price prediction and pattern recognition analysis," Applied Energy, Elsevier, vol. 365(C).
    15. Mordant, Gilles & Segers, Johan, 2022. "Measuring dependence between random vectors via optimal transport," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Zhang, Yan & Xu, Yushi & Zhu, Xintong & Huang, Jionghao, 2024. "Coal price shock propagation through sectoral financial interconnectedness in China's stock market: Quantile coherency network modelling and shock decomposition analysis," Journal of Commodity Markets, Elsevier, vol. 34(C).
    17. Whiteley, Nick, 2021. "Dimension-free Wasserstein contraction of nonlinear filters," Stochastic Processes and their Applications, Elsevier, vol. 135(C), pages 31-50.
    18. Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
    19. He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
    20. Ledoit, Olivier & Wolf, Michael, 2021. "Shrinkage estimation of large covariance matrices: Keep it simple, statistician?," Journal of Multivariate Analysis, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.