IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222019247.html
   My bibliography  Save this article

Ash determination of coal flotation concentrate by analyzing froth image using a novel hybrid model based on deep learning algorithms and attention mechanism

Author

Listed:
  • Yang, Xiaolin
  • Zhang, Kefei
  • Ni, Chao
  • Cao, Hua
  • Thé, Jesse
  • Xie, Guangyuan
  • Tan, Zhongchao
  • Yu, Hesheng

Abstract

Flotation is an important separation method for coal preparation, where ash content is critical to coal product quality. However, the absence of fast and accurate ash determination of coal flotation concentrate restricts the automation of flotation. Therefore, this paper presents a novel hybrid model, named as convolution-attention parallel network (CAPNet), for rapid and accurate determination of the ash content of coal flotation concentrate by analyzing froth images. First, we construct the CAPNet model by combining the classic CNN model (ResNet) and attention mechanism. Two parts are run in parallel so that they can learn from each other without mutual interference. Second, the hyperparameters of CAPNet are optimized using the orthogonal experimental design (OED) method. Finally, the proposed CAPNet is extensively compared with baseline models. Results show that CAPNet outweighs other methods in terms of accuracy and stability. It can achieve a R2 of 0.926, which is about 5%–10% greater than those of baseline CNN models, and over 30% higher than those of machine learning (ML) methods. As for other metrics, such as MAE, MAPE, RMSE, TIC, MPD, MGD and Var, the proposed CAPNet achieves 10%–50% of improvement compared to CNN models, and 50%–80% of improvement compared to ML methods. Extensive cross-comparison of performance between models clearly indicates that the CAPNet is superior to its competitors for the ash determination of coal flotation concentrate using froth images. Furthermore, CAPNet can also reduce the ash determination time from hours needed by existing standard method to 6 ms, which is ideal for engineering applications. We believe that the application of CAPNet in real production will significantly improve the automation and intelligence level of coal flotation, which can also increase economic benefits.

Suggested Citation

  • Yang, Xiaolin & Zhang, Kefei & Ni, Chao & Cao, Hua & Thé, Jesse & Xie, Guangyuan & Tan, Zhongchao & Yu, Hesheng, 2022. "Ash determination of coal flotation concentrate by analyzing froth image using a novel hybrid model based on deep learning algorithms and attention mechanism," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019247
    DOI: 10.1016/j.energy.2022.125027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    2. Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
    3. Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
    4. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    5. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    6. Hong, Ying-Yi & Satriani, Thursy Rienda Aulia, 2020. "Day-ahead spatiotemporal wind speed forecasting using robust design-based deep learning neural network," Energy, Elsevier, vol. 209(C).
    7. Al-Otoom, Awni & Allawzi, Mamdouh & Al-Omari, Naser & Al-Hsienat, Emad, 2010. "Bitumen recovery from Jordanian oil sand by froth flotation using petroleum cycles oil cuts," Energy, Elsevier, vol. 35(10), pages 4217-4225.
    8. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    2. Zhang, Kefei & Yang, Xiaolin & Xu, Liang & Thé, Jesse & Tan, Zhongchao & Yu, Hesheng, 2024. "Enhancing coal-gangue object detection using GAN-based data augmentation strategy with dual attention mechanism," Energy, Elsevier, vol. 287(C).
    3. Ren, Liang & Gong, Yan & Wang, Xingjun & Guo, Qinghua & Yu, Guangsuo, 2023. "Study on recovery of residual carbon from coal gasification fine slag and the influence of oxidation on its characteristics," Energy, Elsevier, vol. 279(C).
    4. Shi, Qinghui & Zhu, Hongzheng & Shen, Tuo & Qin, Zhiqian & Zhu, Jinbo & Gao, Lei & Ou, Zhanbei & Zhang, Yong & Pan, Gaochao, 2024. "Effect of frother on bubble entraining particles in coal flotation," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junjie Liu & Lang Liu, 2024. "Point and Interval Forecasting of Coal Price Adopting a Novel Decomposition Integration Model," Energies, MDPI, vol. 17(16), pages 1-17, August.
    2. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    3. Yang, Qiuling & Deng, Changhong & Chang, Xiqiang, 2022. "Ultra-short-term / short-term wind speed prediction based on improved singular spectrum analysis," Renewable Energy, Elsevier, vol. 184(C), pages 36-44.
    4. Shang, Zhihao & He, Zhaoshuang & Chen, Yao & Chen, Yanhua & Xu, MingLiang, 2022. "Short-term wind speed forecasting system based on multivariate time series and multi-objective optimization," Energy, Elsevier, vol. 238(PC).
    5. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    6. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    7. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.
    8. Imen Azzouz & Wiem Fekih Hassen, 2023. "Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach," Energies, MDPI, vol. 16(24), pages 1-18, December.
    9. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    10. Jacob W. Crandall & Mayada Oudah & Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael A. Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," TSE Working Papers 17-806, Toulouse School of Economics (TSE).
      • Abdallah, Sherief & Bonnefon, Jean-François & Cebrian, Manuel & Crandall, Jacob W. & Ishowo-Oloko, Fatimah & Oudah, Mayada & Rahwan, Iyad & Shariff, Azim & Tennom,, 2017. "Cooperating with Machines," IAST Working Papers 17-68, Institute for Advanced Study in Toulouse (IAST).
      • Jacob Crandall & Mayada Oudah & Fatimah Ishowo-Oloko Tennom & Fatimah Ishowo-Oloko & Sherief Abdallah & Jean-François Bonnefon & Manuel Cebrian & Azim Shariff & Michael Goodrich & Iyad Rahwan, 2018. "Cooperating with machines," Post-Print hal-01897802, HAL.
    11. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    12. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    13. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    14. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    15. Woo Jae Byun & Bumkyu Choi & Seongmin Kim & Joohyun Jo, 2023. "Practical Application of Deep Reinforcement Learning to Optimal Trade Execution," FinTech, MDPI, vol. 2(3), pages 1-16, June.
    16. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    17. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    18. Junhao Wu & Yuan Hu & Daqing Wu & Zhengyong Yang, 2022. "An Aquatic Product Price Forecast Model Using VMD-IBES-LSTM Hybrid Approach," Agriculture, MDPI, vol. 12(8), pages 1-26, August.
    19. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    20. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222019247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.