IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v44y2019i1p58-73.html
   My bibliography  Save this article

Efficient Simulation of High Dimensional Gaussian Vectors

Author

Listed:
  • Nabil Kahalé

    (ESCP Europe, Labex Réfi and Big Data Research Center, 75011 Paris, France)

Abstract

We describe a Markov chain Monte Carlo method to approximately simulate a centered d -dimensional Gaussian vector X with given covariance matrix. The standard Monte Carlo method is based on the Cholesky decomposition, which takes cubic time and has quadratic storage cost in d . By contrast, the additional storage cost of our algorithm is linear in d . We give a bound on the quadratic Wasserstein distance between the distribution of our sample and the target distribution. Our method can be used to estimate the expectation of h ( X ), where h is a real-valued function of d variables. Under certain conditions, we show that the mean square error of our method is inversely proportional to its running time. We also prove that, under suitable conditions, the total time needed by our method to obtain a given standardized mean square error is quadratic or nearly quadratic in d . A numerical example is given.

Suggested Citation

  • Nabil Kahalé, 2019. "Efficient Simulation of High Dimensional Gaussian Vectors," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 58-73, February.
  • Handle: RePEc:inm:ormoor:v:44:y:2019:i:1:p:58-73
    DOI: 10.1287/moor.2017.0914
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0914
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dowson, D. C. & Landau, B. V., 1982. "The Fréchet distance between multivariate normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 12(3), pages 450-455, September.
    2. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    3. Claude J. P. Bélisle & H. Edwin Romeijn & Robert L. Smith, 1993. "Hit-and-Run Algorithms for Generating Multivariate Distributions," Mathematics of Operations Research, INFORMS, vol. 18(2), pages 255-266, May.
    4. Håvard Rue, 2001. "Fast sampling of Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 325-338.
    5. Yulia Gel & Adrian E. Raftery & Tilmann Gneiting, 2004. "Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation Method," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 575-583, January.
    6. Daniel Russo & Benjamin Van Roy, 2014. "Learning to Optimize via Posterior Sampling," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1221-1243, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabil Kahale, 2023. "Simulating Gaussian vectors via randomized dimension reduction and PCA," Papers 2304.07377, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    2. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    3. Sorawit Saengkyongam & Anthony Hayter & Seksan Kiatsupaibul & Wei Liu, 2020. "Efficient computation of the stochastic behavior of partial sum processes," Computational Statistics, Springer, vol. 35(1), pages 343-358, March.
    4. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2023. "Randomized geometric tools for anomaly detection in stock markets," Post-Print hal-04223511, HAL.
    5. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2022. "Randomized geometric tools for anomaly detection in stock markets," Papers 2205.03852, arXiv.org, revised May 2022.
    6. Badenbroek, Riley & de Klerk, Etienne, 2022. "Complexity analysis of a sampling-based interior point method for convex optimization," Other publications TiSEM 3d774c6d-8141-4f31-a621-5, Tilburg University, School of Economics and Management.
    7. Bélisle, Claude, 2000. "Slow hit-and-run sampling," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 33-43, March.
    8. Riley Badenbroek & Etienne Klerk, 2022. "Simulated Annealing for Convex Optimization: Rigorous Complexity Analysis and Practical Perspectives," Journal of Optimization Theory and Applications, Springer, vol. 194(2), pages 465-491, August.
    9. de Klerk, Etienne & Badenbroek, Riley, 2022. "Simulated annealing with hit-and-run for convex optimization: complexity analysis and practical perspectives," Other publications TiSEM 323b4588-65e0-4889-a555-9, Tilburg University, School of Economics and Management.
    10. Huseyin Mete & Yanfang Shen & Zelda Zabinsky & Seksan Kiatsupaibul & Robert Smith, 2011. "Pattern discrete and mixed Hit-and-Run for global optimization," Journal of Global Optimization, Springer, vol. 50(4), pages 597-627, August.
    11. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    12. Luis V. Montiel & J. Eric Bickel, 2013. "Approximating Joint Probability Distributions Given Partial Information," Decision Analysis, INFORMS, vol. 10(1), pages 26-41, March.
    13. Huseyin Onur Mete & Zelda B. Zabinsky, 2014. "Multiobjective Interacting Particle Algorithm for Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 500-513, August.
    14. Nabil Kahale, 2023. "Simulating Gaussian vectors via randomized dimension reduction and PCA," Papers 2304.07377, arXiv.org.
    15. Richard J. Caron & Tim Traynor & Shafiu Jibrin, 2010. "Feasibility and Constraint Analysis of Sets of Linear Matrix Inequalities," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 144-153, February.
    16. Tsionas, Mike G., 2020. "A coherent approach to Bayesian Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 281(2), pages 439-448.
    17. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    18. Elham Yousefi & Luc Pronzato & Markus Hainy & Werner G. Müller & Henry P. Wynn, 2023. "Discrimination between Gaussian process models: active learning and static constructions," Statistical Papers, Springer, vol. 64(4), pages 1275-1304, August.
    19. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    20. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:44:y:2019:i:1:p:58-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.