IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223030037.html
   My bibliography  Save this article

A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers

Author

Listed:
  • Ko, Yun Mo
  • Song, Joo Young
  • Lee, Jae Won
  • Sohn, Sangho
  • Song, Chan Ho
  • Khoshvaght-Aliabadi, Morteza
  • Kim, Yongchan
  • Kang, Yong Tae

Abstract

This study provides an extensive analysis of the key parameters impacting the air-side heat transfer and frictional pressure drop performance in Finned Tube Heat Exchangers (FTHEs). The study considers parameters such as fin spacing, fin height, and different fin patterns and their role in shaping the thermal and hydraulic characteristics of the exchangers. Both experimental and numerical Colburn j-factor and f-factor correlations reported in the literature are compared for different fin types, and the most effective parameters are evaluated. Furthermore, new correlations were developed based on the fin spacing, tube pitches, and the number of tube rows based on the existing literatures. This review introduces a novel energy performance parameter (EPP) for each FTHE type. The EPP, which represents the ratio of the heat transfer rate to the pumping power, provides a useful tool for comparing various fin configurations under different operating conditions. The EPP analysis concludes that spiral fins display the highest EPP, whereas wavy fins exhibit the lowest EPP when compared to a plain fin reference. This comprehensive review not only provides a detailed understanding of FTHEs' performance but also introduces a new framework for optimizing heat exchanger design and operation for practical applications.

Suggested Citation

  • Ko, Yun Mo & Song, Joo Young & Lee, Jae Won & Sohn, Sangho & Song, Chan Ho & Khoshvaght-Aliabadi, Morteza & Kim, Yongchan & Kang, Yong Tae, 2024. "A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030037
    DOI: 10.1016/j.energy.2023.129609
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ocłoń, Paweł & Łopata, Stanisław & Stelmach, Tomasz & Li, Mingjie & Zhang, Jian-Fei & Mzad, Hocine & Tao, Wen-Quan, 2021. "Design optimization of a high-temperature fin-and-tube heat exchanger manifold – A case study," Energy, Elsevier, vol. 215(PB).
    2. Taler, Dawid & Taler, Jan & Trojan, Marcin, 2020. "Thermal calculations of plate–fin–and-tube heat exchangers with different heat transfer coefficients on each tube row," Energy, Elsevier, vol. 203(C).
    3. Lotfi, Babak & Zeng, Min & Sundén, Bengt & Wang, Qiuwang, 2014. "3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators," Energy, Elsevier, vol. 73(C), pages 233-257.
    4. Tahseen, Tahseen Ahmad & Ishak, M. & Rahman, M.M., 2015. "An overview on thermal and fluid flow characteristics in a plain plate finned and un-finned tube banks heat exchanger," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 363-380.
    5. Shao, Liang-Liang & Yang, Liang & Zhang, Chun-Lu, 2010. "Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions," Applied Energy, Elsevier, vol. 87(4), pages 1187-1197, April.
    6. Khoshvaght-Aliabadi, M. & Tatari, M. & Salami, M., 2018. "Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers," Renewable Energy, Elsevier, vol. 115(C), pages 1099-1108.
    7. Tran, Ngoctan & Wang, Chi-Chuan, 2019. "Effects of tube shapes on the performance of recuperative and regenerative heat exchangers," Energy, Elsevier, vol. 169(C), pages 1-17.
    8. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    9. Halıcı, Fethi & Taymaz, İmdat & Gündüz, Mehmet, 2001. "The effect of the number of tube rows on heat, mass and momentum transfer in flat-plate finned tube heat exchangers," Energy, Elsevier, vol. 26(11), pages 963-972.
    10. Heng Chen & Yungang Wang & Qinxin Zhao & Haidong Ma & Yuxin Li & Zhongya Chen, 2014. "Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks," Energies, MDPI, vol. 7(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    2. Silvia Macchitella & Gianpiero Colangelo & Giuseppe Starace, 2023. "Performance Prediction of Plate-Finned Tube Heat Exchangers for Refrigeration: A Review on Modeling and Optimization Methods," Energies, MDPI, vol. 16(4), pages 1-30, February.
    3. Dawid Taler & Jan Taler & Marcin Trojan, 2020. "Experimental Verification of an Analytical Mathematical Model of a Round or Oval Tube Two-Row Car Radiator," Energies, MDPI, vol. 13(13), pages 1-23, July.
    4. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2021. "Thermal Calculations of Four-Row Plate-Fin and Tube Heat Exchanger Taking into Account Different Air-Side Correlations on Individual Rows of Tubes for Low Reynold Numbers," Energies, MDPI, vol. 14(21), pages 1-13, October.
    6. Mukkamala, Yagnavalkya, 2017. "Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1208-1229.
    7. Xinchen Na & Yingxue Yao & Jianjun Du, 2023. "Thermal Performance of a Novel Non-Tubular Absorber with Extended Internal Surfaces for Concentrated Solar Power Receivers," Energies, MDPI, vol. 16(13), pages 1-21, June.
    8. Byrne, Paul & Miriel, Jacques & Lenat, Yves, 2011. "Experimental study of an air-source heat pump for simultaneous heating and cooling – Part 2: Dynamic behaviour and two-phase thermosiphon defrosting technique," Applied Energy, Elsevier, vol. 88(9), pages 3072-3078.
    9. Pradhyumn Bhale & Mrinal Kaushik & Jane-Sunn Liaw & Chi-Chuan Wang, 2019. "Airside Performance of H-Type Finned Tube Banks with Surface Modifications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    10. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    11. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    12. Wu, Jianghong & Ouyang, Guang & Hou, Puxiu & Xiao, Haobin, 2011. "Experimental investigation of frost formation on a parallel flow evaporator," Applied Energy, Elsevier, vol. 88(5), pages 1549-1556, May.
    13. Xiaocheng Du & Weiteng Li & Xirong Zhang & Jingrong Chen & Tingyu Chen & Dong Yang, 2022. "Experimental Research on the Flow and Heat Transfer Characteristics of Subcritical and Supercritical Water in the Vertical Upward Smooth and Rifled Tubes," Energies, MDPI, vol. 15(21), pages 1-22, October.
    14. Rajesh Ravi & Senthilkumar Pachamuthu, 2018. "Design and Development of Innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an Engine WHR and Its Impact on Exhaust Emissions," Energies, MDPI, vol. 11(10), pages 1-19, October.
    15. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    16. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    17. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    18. Kundu, Balaram & Barman, Debasis, 2011. "An analytical prediction for performance and optimization of an annular fin assembly of trapezoidal profile under dehumidifying conditions," Energy, Elsevier, vol. 36(5), pages 2572-2588.
    19. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    20. Moo-Yeon Lee & Yongchan Kim & Dong-Yeon Lee, 2012. "Experimental Study on Frost Height of Round Plate Fin-Tube Heat Exchangers for Mobile Heat Pumps," Energies, MDPI, vol. 5(9), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.