IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1099-1108.html
   My bibliography  Save this article

Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers

Author

Listed:
  • Khoshvaght-Aliabadi, M.
  • Tatari, M.
  • Salami, M.

Abstract

Improving the efficiency is a crucial issue to introduce renewable energy as a commercial success. In the current experimental study, the hydrothermal performance of corrugated/perforated fins (CPFs) is investigation for use in plate heat exchangers as heat exchange devise in the active solar heating system. Water and Al2O3/water nanofluid (NF) are applied as working fluid. The considered factors are waviness aspect ratio, perforation diameter, nanoparticle concentration, and flow rate. Investigation of these factors leads to the implementation of more than 250 experiments. The results of studied factors show that the heat transfer coefficient of CPFs is more than that of typical ones, while the pressure drop of CPFs is lower. The optimal geometry of CPFs is obtained by using a hydrothermal performance factor. The maximum performance factor of 1.95 is recorded for the CPF with the waviness aspect ratio of 0.51 and perforation diameter of 6 mm at the flow rate of 0.117 × 10−3 m3/s. Finally, higher values of heat transfer coefficient and pressure drop are detected for Al2O3/water NFs compared to the base fluid. At the studied ranges, the maximum augmentations of 14.1% and 9.5% are detected, respectively, for heat transfer coefficient and pressure drop of 0.3 wt% NF flow.

Suggested Citation

  • Khoshvaght-Aliabadi, M. & Tatari, M. & Salami, M., 2018. "Analysis on Al2O3/water nanofluid flow in a channel by inserting corrugated/perforated fins for solar heating heat exchangers," Renewable Energy, Elsevier, vol. 115(C), pages 1099-1108.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1099-1108
    DOI: 10.1016/j.renene.2017.08.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117308510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardinale, N. & Piccininni, F. & Stefanizzi, P., 2003. "Economic optimization of low-flow solar domestic hot water plants," Renewable Energy, Elsevier, vol. 28(12), pages 1899-1914.
    2. Abou Elmaaty, Talal M. & Kabeel, A.E. & Mahgoub, M., 2017. "Corrugated plate heat exchanger review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 852-860.
    3. Hachemi, A., 1999. "Experimental study of thermal performance of offset rectangular plate fin absorber-plates," Renewable Energy, Elsevier, vol. 17(3), pages 371-384.
    4. Ntsaluba, Sula & Zhu, Bing & Xia, Xiaohua, 2016. "Optimal flow control of a forced circulation solar water heating system with energy storage units and connecting pipes," Renewable Energy, Elsevier, vol. 89(C), pages 108-124.
    5. Kumar, Vikas & Tiwari, Arun Kumar & Ghosh, Subrata Kumar, 2016. "Effect of variable spacing on performance of plate heat exchanger using nanofluids," Energy, Elsevier, vol. 114(C), pages 1107-1119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Yun Mo & Song, Joo Young & Lee, Jae Won & Sohn, Sangho & Song, Chan Ho & Khoshvaght-Aliabadi, Morteza & Kim, Yongchan & Kang, Yong Tae, 2024. "A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers," Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ji & Zhu, Xiaowei & Mondejar, Maria E. & Haglind, Fredrik, 2019. "A review of heat transfer enhancement techniques in plate heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 305-328.
    2. Wang, Yanqiu & Ji, Jie & Sun, Wei & Yuan, Weiqi & Cai, Jingyong & Guo, Chao & He, Wei, 2016. "Experiment and simulation study on the optimization of the PV direct-coupled solar water heating system," Energy, Elsevier, vol. 100(C), pages 154-166.
    3. Youcef-Ali, S., 2005. "Study and optimization of the thermal performances of the offset rectangular plate fin absorber plates, with various glazing," Renewable Energy, Elsevier, vol. 30(2), pages 271-280.
    4. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    5. Hyung Ju Lee & Seong Hyuk Lee, 2020. "Effect of Secondary Vortex Flow Near Contact Point on Thermal Performance in the Plate Heat Exchanger with Different Corrugation Profiles," Energies, MDPI, vol. 13(6), pages 1-13, March.
    6. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    7. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).
    8. Velmurugan, V. & Naveen Kumar, K.J. & Noorul Haq, T. & Srithar, K., 2009. "Performance analysis in stepped solar still for effluent desalination," Energy, Elsevier, vol. 34(9), pages 1179-1186.
    9. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    10. Ho, C.D. & Chen, T.C., 2006. "The recycle effect on the collector efficiency improvement of double-pass sheet-and-tube solar water heaters with external recycle," Renewable Energy, Elsevier, vol. 31(7), pages 953-970.
    11. Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
    12. Yazid, Muhammad Noor Afiq Witri Muhammad & Sidik, Nor Azwadi Che & Yahya, Wira Jazair, 2017. "Heat and mass transfer characteristics of carbon nanotube nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 914-941.
    13. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    14. Sajid, Muhammad Usman & Ali, Hafiz Muhammad, 2019. "Recent advances in application of nanofluids in heat transfer devices: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 556-592.
    15. Tilahun, Fitsum Bekele & Bhandari, Ramchandra & Mamo, Mengesha, 2019. "Design optimization and control approach for a solar-augmented industrial heating," Energy, Elsevier, vol. 179(C), pages 186-198.
    16. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    17. Junhyeok Yong & Junggyun Ham & Ohkyung Kwon & Honghyun Cho, 2021. "Experimental Investigation of the Heat Transfer Characteristics of Plate Heat Exchangers Using LiBr/Water as Working Fluid," Energies, MDPI, vol. 14(20), pages 1-15, October.
    18. Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
    19. Atul Bhattad & Vinay Atgur & Boggarapu Nageswar Rao & N. R. Banapurmath & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & A. M. Sajjan & R. Prasanna Shankara & N. H. Ayachit, 2023. "Review on Mono and Hybrid Nanofluids: Preparation, Properties, Investigation, and Applications in IC Engines and Heat Transfer," Energies, MDPI, vol. 16(7), pages 1-40, March.
    20. Edoardo Alessio Piana & Benedetta Grassi & Laurent Socal, 2020. "A Standard-Based Method to Simulate the Behavior of Thermal Solar Systems with a Stratified Storage Tank," Energies, MDPI, vol. 13(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1099-1108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.