IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p5055-d1182978.html
   My bibliography  Save this article

Thermal Performance of a Novel Non-Tubular Absorber with Extended Internal Surfaces for Concentrated Solar Power Receivers

Author

Listed:
  • Xinchen Na

    (School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), HIT Campus of University Town of Shenzhen, Shenzhen 518055, China)

  • Yingxue Yao

    (School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), HIT Campus of University Town of Shenzhen, Shenzhen 518055, China)

  • Jianjun Du

    (School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), HIT Campus of University Town of Shenzhen, Shenzhen 518055, China)

Abstract

A non-tubular prototype cavity receiver absorber with extended internal surfaces (fins) is proposed to enhance heat transfer in Stirling engine-based Concentrated Solar Power systems. There is limited research on the realization of downsized absorbers in terms of their design and manufacturing. The objective of the absorber solution proposed in this paper is to address the issue of inadequate comprehension regarding the impacts of the geometric and flow parameters on thermohydraulic efficiency. These impacts are numerically investigated in a 100 mm long heat transfer channel with a 10 mm × 10 mm section. The prototype absorber is fabricated using a wire electrode-discharging manufacturing approach, and is experimentally investigated using the enthalpy method. Numerical results indicate that heat transfer to the working fluid in the novel absorber can reach 482 W at the reasonable cost of 0.391% pressure drop per 100 mm (air flow at 0.0015 kg/s and 5 bar). In the experimental investigation, the prototype realizes a 1113.033 W heat transfer rate at 8 bar and 12 kg/h. This implies that a non-tubular design with extended internal surfaces can increase the internal surface area to enhance heat transfer while downsizing the volume to reduce heat loss.

Suggested Citation

  • Xinchen Na & Yingxue Yao & Jianjun Du, 2023. "Thermal Performance of a Novel Non-Tubular Absorber with Extended Internal Surfaces for Concentrated Solar Power Receivers," Energies, MDPI, vol. 16(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5055-:d:1182978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/5055/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/5055/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lotfi, Babak & Zeng, Min & Sundén, Bengt & Wang, Qiuwang, 2014. "3D numerical investigation of flow and heat transfer characteristics in smooth wavy fin-and-elliptical tube heat exchangers using new type vortex generators," Energy, Elsevier, vol. 73(C), pages 233-257.
    2. Seyed Soheil Mousavi Ajarostaghi & Mohammad Zaboli & Hossein Javadi & Borja Badenes & Javier F. Urchueguia, 2022. "A Review of Recent Passive Heat Transfer Enhancement Methods," Energies, MDPI, vol. 15(3), pages 1-60, January.
    3. Xinchen Na & Yingxue Yao & Chenyang Zhao & Jianjun Du, 2022. "Heat Loss Reduction Approach in Cavity Receiver Design Based on Performance Investigation of a Novel Positive Conical Scheme," Energies, MDPI, vol. 15(3), pages 1-21, January.
    4. Zheng, Xinyao & Zhou, Yuekuan, 2023. "A three-dimensional unsteady numerical model on a novel aerogel-based PV/T-PCM system with dynamic heat-transfer mechanism and solar energy harvesting analysis," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debabrata Barik & Arun M. & Muhammad Ahsan Saeed & Tholkappiyan Ramachandran, 2022. "Experimental and Computational Analysis of Aluminum-Coated Dimple and Plain Tubes in Solar Water Heater System," Energies, MDPI, vol. 16(1), pages 1-18, December.
    2. Ko, Yun Mo & Song, Joo Young & Lee, Jae Won & Sohn, Sangho & Song, Chan Ho & Khoshvaght-Aliabadi, Morteza & Kim, Yongchan & Kang, Yong Tae, 2024. "A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers," Energy, Elsevier, vol. 287(C).
    3. Artur S. Bartosik, 2023. "Numerical Heat Transfer and Fluid Flow: New Advances," Energies, MDPI, vol. 16(14), pages 1-7, July.
    4. Khoshvaght-Aliabadi, M. & Sartipzadeh, O. & Alizadeh, A., 2015. "An experimental study on vortex-generator insert with different arrangements of delta-winglets," Energy, Elsevier, vol. 82(C), pages 629-639.
    5. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao, 2023. "Field experimental test and performance analysis of a novel hybrid CdTe PV glass module integrated with phase change materials," Renewable Energy, Elsevier, vol. 217(C).
    6. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, vol. 11(10), pages 1-45, October.
    7. Pasu Poonpakdee & Boonsong Samutpraphut & Chinaruk Thianpong & Suriya Chokphoemphun & Smith Eiamsa-ard & Naoki Maruyama & Masafumi Hirota, 2022. "Heat Transfer Intensification in a Heat Exchanger by Means of Twisted Tapes in Rib and Sawtooth Forms," Energies, MDPI, vol. 15(23), pages 1-17, November.
    8. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    9. Muhammad Waheed Azam & Luca Cattani & Matteo Malavasi & Fabio Bozzoli, 2023. "Experimental Study of the Corrugation Profile Effect on the Local Heat Transfer Coefficient," Energies, MDPI, vol. 16(20), pages 1-21, October.
    10. Pei Lu & Zheng Liang & Xianglong Luo & Yangkai Xia & Jin Wang & Kaihuang Chen & Yingzong Liang & Jianyong Chen & Zhi Yang & Jiacheng He & Ying Chen, 2023. "Design and Optimization of Organic Rankine Cycle Based on Heat Transfer Enhancement and Novel Heat Exchanger: A Review," Energies, MDPI, vol. 16(3), pages 1-34, January.
    11. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Zhao, Yang & Wang, Ranxu & Gao, Dan & Chen, Haiping & Zhang, Heng, 2024. "Numerical investigation and optimization of a multi-stage Tesla-valve channel based photovoltaic/thermal module," Renewable Energy, Elsevier, vol. 228(C).
    13. Hu, Zhipei & Jiang, Shuo & Sun, Zhigao & Li, Jun, 2024. "Numerical simulation of fin arrangements on the melting process of PCM in a rectangular unit," Renewable Energy, Elsevier, vol. 220(C).
    14. Ahmed Saad Soliman & Li Xu & Junguo Dong & Ping Cheng, 2022. "Numerical Investigation of the Ribs’ Shape, Spacing, and Height on Heat Transfer Performance of Turbulent Flow in a Flat Plate Heat Exchanger," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    15. Seyed Soheil Mousavi Ajarostaghi & Seyed Hossein Hashemi Karouei & Mehdi Alinia-kolaei & Alireza Ahmadnejad Karimi & Morteza Mohammad Zadeh & Kurosh Sedighi, 2023. "On the Hydrothermal Behavior of Fluid Flow and Heat Transfer in a Helical Double-Tube Heat Exchanger with Curved Swirl Generator; Impacts of Length and Position," Energies, MDPI, vol. 16(4), pages 1-19, February.
    16. Simon Kügele & Gino Omar Mathlouthi & Peter Renze & Thomas Grützner, 2022. "Numerical Simulation of Flow and Heat Transfer of a Discontinuous Single Started Helically Ribbed Pipe," Energies, MDPI, vol. 15(19), pages 1-17, September.
    17. Hesam Moghadasi & Mohamad Bayat & Ehsan Aminian & Jesper H. Hattel & Mahdi Bodaghi, 2022. "A Computational Fluid Dynamics Study of Laminar Forced Convection Improvement of a Non-Newtonian Hybrid Nanofluid within an Annular Pipe in Porous Media," Energies, MDPI, vol. 15(21), pages 1-16, November.
    18. Zhou, Yuekuan & Zheng, Siqian, 2024. "A co-simulated material-component-system-district framework for climate-adaption and sustainability transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Alexander Igolnikov & Pavel Skripov, 2023. "Characteristic Features of Heat Transfer in the Course of Decay of Unstable Binary Mixture," Energies, MDPI, vol. 16(5), pages 1-15, February.
    20. Oleg A. Kolenchukov & Kirill A. Bashmur & Sergei O. Kurashkin & Elena V. Tsygankova & Natalia A. Shepeta & Roman B. Sergienko & Praskovya L. Pavlova & Roman A. Vaganov, 2023. "Numerical and Experimental Study of Heat Transfer in Pyrolysis Reactor Heat Exchange Channels with Different Hemispherical Protrusion Geometries," Energies, MDPI, vol. 16(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:5055-:d:1182978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.