IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p584-d205379.html
   My bibliography  Save this article

Airside Performance of H-Type Finned Tube Banks with Surface Modifications

Author

Listed:
  • Pradhyumn Bhale

    (Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur 721302, India)

  • Mrinal Kaushik

    (Department of Aerospace Engineering, Indian Institute of Technology, Kharagpur 721302, India)

  • Jane-Sunn Liaw

    (Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Zhutung 310, Taiwan)

  • Chi-Chuan Wang

    (Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan)

Abstract

The present study numerically investigates some novel modifications to augment the performance of the H-type finned tube banks, which are widely used in waste heat recovery in industries. The imposed modifications upon the original H-type finned tube banks include the following: (1) Design 1 contains some triangular cuts at the edge of the original rectangular fin; (2) Design 2 modifies the original rectangular geometry into a trapezoid shape; (3) Design 3 renders the original rectangular cross-section fin thickness into trapezoid cross-section; and (4) Design 4 changes the original rectangular shape into a circular shape. Based on the simulations, it is found that Design 1 shows barely any improvements in the heat transfer performance and surface area reduction. Design 2 can provide some weight saving and surface area reduction at a slightly inferior heat transfer performance. Design 3 can offer up to 14% improvements in the overall heat transfer performance without any pumping power penalty. Yet, Design 4 provides the maximum weight saving as compared to the original reference case. With 3–9% lesser surface area than the reference case, Design 4 still offers marginally higher heat transfer performance.

Suggested Citation

  • Pradhyumn Bhale & Mrinal Kaushik & Jane-Sunn Liaw & Chi-Chuan Wang, 2019. "Airside Performance of H-Type Finned Tube Banks with Surface Modifications," Energies, MDPI, vol. 12(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:584-:d:205379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, X.B. & Tang, G.H. & Ma, X.W. & Jin, Y. & Tao, W.Q., 2014. "Numerical investigation of heat transfer and erosion characteristics for H-type finned oval tube with longitudinal vortex generators and dimples," Applied Energy, Elsevier, vol. 127(C), pages 93-104.
    2. Heng Chen & Yungang Wang & Qinxin Zhao & Haidong Ma & Yuxin Li & Zhongya Chen, 2014. "Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks," Energies, MDPI, vol. 7(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    2. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    3. Ko, Yun Mo & Song, Joo Young & Lee, Jae Won & Sohn, Sangho & Song, Chan Ho & Khoshvaght-Aliabadi, Morteza & Kim, Yongchan & Kang, Yong Tae, 2024. "A critical review on Colburn j-factor and f-factor and energy performance analysis for finned tube heat exchangers," Energy, Elsevier, vol. 287(C).
    4. Lei Chai & Savvas A. Tassou, 2018. "A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface," Energies, MDPI, vol. 11(10), pages 1-45, October.
    5. Wang, Jingyi & Hua, Jing & Fu, Lin & Zhou, Ding, 2020. "Effect of gas nonlinearity on boilers equipped with vapor-pump (BEVP) system for flue-gas heat and moisture recovery," Energy, Elsevier, vol. 198(C).
    6. Orumbayev, Rakhimzhan K. & Bakhtiyar, Balzhan T. & Umyshev, Dias R. & Kumargazina, Madina B. & Otynchiyeva, Marzhan T. & Akimbek, Gulmira A., 2021. "Experimental study of ash wear of heat exchange surfaces of the boiler," Energy, Elsevier, vol. 215(PA).
    7. Choi, Seok Min & Kwon, Hyun Goo & Kim, Taehyun & Moon, Hee Koo & Cho, Hyung Hee, 2022. "Active cooling of photovoltaic (PV) cell by acoustic excitation in single-dimpled internal channel," Applied Energy, Elsevier, vol. 309(C).
    8. Xiaocheng Du & Weiteng Li & Xirong Zhang & Jingrong Chen & Tingyu Chen & Dong Yang, 2022. "Experimental Research on the Flow and Heat Transfer Characteristics of Subcritical and Supercritical Water in the Vertical Upward Smooth and Rifled Tubes," Energies, MDPI, vol. 15(21), pages 1-22, October.
    9. Rajesh Ravi & Senthilkumar Pachamuthu, 2018. "Design and Development of Innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an Engine WHR and Its Impact on Exhaust Emissions," Energies, MDPI, vol. 11(10), pages 1-19, October.
    10. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    11. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    12. Choi, Seok Min & Kwon, Hyun Goo & Bae, Hyung Mo & Moon, Hee Koo & Cho, Hyung Hee, 2023. "Effects of staggered dimple array under different flow conditions for enhancing cooling performance of solar systems," Applied Energy, Elsevier, vol. 342(C).
    13. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    14. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.
    15. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Seok Min Choi & Jun Su Park & Ho-Seong Sohn & Seon Ho Kim & Hyung Hee Cho, 2016. "Thermal Characteristics of Tube Bundles in Ultra-Supercritical Boilers," Energies, MDPI, vol. 9(10), pages 1-14, September.
    17. Zhang, Pan & Ma, Ting & Li, Wei-Dong & Ma, Guang-Yu & Wang, Qiu-Wang, 2018. "Design and optimization of a novel high temperature heat exchanger for waste heat cascade recovery from exhaust flue gases," Energy, Elsevier, vol. 160(C), pages 3-18.
    18. Mladen Bošnjaković & Robert Santa & Marko Katinić, 2023. "Experimental Testing of a Water-to-Water Heat Pump with and without IHX by Using Refrigerants R1234yf and R1234ze(E)," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
    19. Shehryar Ishaque & Man-Hoe Kim, 2019. "Seasonal Performance Investigation for Residential Heat Pump System with Different Outdoor Heat Exchanger Designs," Energies, MDPI, vol. 12(24), pages 1-22, December.
    20. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:584-:d:205379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.