IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v309y2024ics036054422402930x.html
   My bibliography  Save this article

Comparative analysis of data-driven electric vehicle battery health models across different operating conditions

Author

Listed:
  • Kumar, Roushan
  • Das, Kaushik
  • Krishna, Anurup

Abstract

The work covers the development of a data-driven algorithm and computes the performance of learning models for lithium-ion battery state of health (SOH) estimation. A wide range of environmental and temperature conditions (15 °C, 25 °C, and 35 °C) at different charging and discharging rates of 1C and 2C are used for electric vehicle battery health estimation. The result of the tested data of cell ‘a’ is validated with a different set of cell ‘b’ on identical test parameters, and the results are tabulated and compared. At 25 °C, the mean absolute errors for the regression algorithms decision tree (DT), k-nearest neighbor (KNN), and random forest (RF) are 3.78641E-03, 3.62524E-03, and 6.16931E-03. The mean absolute percent error for regression algorithms DT, KNN, and RF is 1.48921E-03, 1.40631E-03, and 2.40260E-03. The root mean square error for regression algorithms DT, KNN, and RF is 1.26813E-02, 9.73320E-03, and 1.17238E-02, and the mean squared error for regression algorithms DT, KNN, and RF is 1.60816E-04, 9.47351E-05, and 1.37448E-04. The results show that the KNN and DT methods accurately estimate the SOH under diversified operating conditions in comparison with RF methods and can foster advanced battery health monitoring systems.

Suggested Citation

  • Kumar, Roushan & Das, Kaushik & Krishna, Anurup, 2024. "Comparative analysis of data-driven electric vehicle battery health models across different operating conditions," Energy, Elsevier, vol. 309(C).
  • Handle: RePEc:eee:energy:v:309:y:2024:i:c:s036054422402930x
    DOI: 10.1016/j.energy.2024.133155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402930X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:309:y:2024:i:c:s036054422402930x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.