IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp655-663.html
   My bibliography  Save this article

Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions

Author

Listed:
  • Shaafi, T.
  • Velraj, R.

Abstract

Experimental investigation was carried out to study the combustion, engine performance and emission characteristics of a single cylinder, naturally aspirated, air cooled, constant speed compression ignition engine, fuelled with two modified fuel blends, B20 (Diesel–soybean biodiesel) and diesel–soybean biodiesel–ethanol blends, with alumina as a nanoadditive (D80SBD15E4S1 + alumina), and the results are compared with those of neat diesel. The nanoadditive was mixed in the fuel blend along with a suitable surfactant by means of an ultrasonicator, to achieve stable suspension. The properties of B20, D80SBD15E4S1 + alumina fuel blend are changed due to the mixing of soybean biodiesel and the incorporation of the alumina nanoadditives. Some of the measured properties are compared with those of neat diesel, and presented. The cylinder pressure during the combustion and the heat release rate, are higher in the D80SBD15E4S1 + alumina fuel blend, compared to neat diesel. Further, the exhaust gas temperature is reduced in the case of the D80SBD15E4S1 + alumina fuel blend, which shows that higher temperature difference prevailing during the expansion stroke could be the major reason for the higher brake thermal efficiency in the case of D80SBD15E4S1 + alumina fuel blend. The presence of oxygen in the soybean biodiesel, and the better mixing capabilities of the nanoparticles, reduce the CO and UBHC appreciably, though there is a small increase in NOx at full load condition.

Suggested Citation

  • Shaafi, T. & Velraj, R., 2015. "Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions," Renewable Energy, Elsevier, vol. 80(C), pages 655-663.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:655-663
    DOI: 10.1016/j.renene.2015.02.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    2. Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
    3. Yang, W.M. & An, H. & Chou, S.K. & Chua, K.J. & Mohan, B. & Sivasankaralingam, V. & Raman, V. & Maghbouli, A. & Li, J., 2013. "Impact of emulsion fuel with nano-organic additives on the performance of diesel engine," Applied Energy, Elsevier, vol. 112(C), pages 1206-1212.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    2. Shaafi, T. & Sairam, K. & Gopinath, A. & Kumaresan, G. & Velraj, R., 2015. "Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 563-573.
    3. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    4. Hosseini, Seyyed Hassan & Taghizadeh-Alisaraei, Ahmad & Ghobadian, Barat & Abbaszadeh-Mayvan, Ahmad, 2017. "Effect of added alumina as nano-catalyst to diesel-biodiesel blends on performance and emission characteristics of CI engine," Energy, Elsevier, vol. 124(C), pages 543-552.
    5. Reham, S.S. & Masjuki, H.H. & Kalam, M.A. & Shancita, I. & Rizwanul Fattah, I.M. & Ruhul, A.M., 2015. "Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1566-1579.
    6. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    7. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    8. Khond, Vivek W. & Kriplani, V.M., 2016. "Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1338-1348.
    9. Pourvosoughi, Navid & Mohammadi, Pouya & Goli, Sayed Amir Hossein & Nikbakht, Ali M. & Jafarmadar, Samad & Pakzad, Mohsen & Tabatabaei, Meisam, 2016. "Polysel: An environmental-friendly CI engine fuel," Energy, Elsevier, vol. 111(C), pages 691-700.
    10. Roy, Murari Mohon & Wang, Wilson & Bujold, Justin, 2013. "Biodiesel production and comparison of emissions of a DI diesel engine fueled by biodiesel–diesel and canola oil–diesel blends at high idling operations," Applied Energy, Elsevier, vol. 106(C), pages 198-208.
    11. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod.Kumar, 2017. "A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 563-588.
    12. An, H. & Yang, W.M. & Maghbouli, A. & Li, J. & Chou, S.K. & Chua, K.J., 2013. "Performance, combustion and emission characteristics of biodiesel derived from waste cooking oils," Applied Energy, Elsevier, vol. 112(C), pages 493-499.
    13. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    14. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    15. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).
    16. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    17. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    18. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    19. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    20. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:655-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.