IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025641.html
   My bibliography  Save this article

Solar power tower plants with Bimetallic receiver tubes: A thermomechanical study of two- and three-layer composite tubes configurations

Author

Listed:
  • Pérez-Álvarez, R.
  • Montoya, A.
  • López-Puente, J.
  • Santana, D.

Abstract

The present study numerically investigated the use of bimetallic tubes for concentrating solar energy applications. Specifically, a billboard receiver employing supercritical carbon dioxide (sCO2) as the heat transfer fluid is considered, with tubes made of stainless steel 316 and GRCop-84. Two- and three-layer tube configurations are compared, exploring the impact of more thermally conductive layer thickness and placement on temperature and stress fields. The findings demonstrate that the use of bimetallic tubes can effectively reduce temperature and stress in the receiver tubes. In light of the results, it can be concluded that the higher thermal conductivity of GRCop-84 leads to a more uniform temperature distribution, resulting in lower temperature peaks on the outer tube surface, and reduced maximum stresses. Furthermore, it has been found that the incident heat flux necessary to achieve the same temperature increment of sCO2 inside the panel is 1.7% lower in a two-layer tube configuration where GRCop-84 is placed in the outer layer. Besides, the stress in the 316 layer can be reduced up to 53.2% with the cited configuration. Nevertheless, it is observed that it is more beneficial to tube performance to place the more conductive layer inside, since it reduces stress in the GRCop-84 layer, and its compressive stress and corrosion-resistant properties help to avoid the risk of stress-corrosion-cracking. In a three-layer composite tube configuration, placing the more thermally conductive GRCop-84 layer close to the outer tube wall decreases the maximum temperature while increasing stress. The opposite effect is achieved by placing the more conductive layer closer to the inner tube wall. Overall, the results demonstrate the potential benefits of using bimetallic tubes for solar energy applications, when the layers have similar thicknesses, since their use can enhance the thermomechanical performance of conventional tubes made with one layer of 316 stainless steel. This fact has important implications for the design of efficient and reliable solar thermal systems.

Suggested Citation

  • Pérez-Álvarez, R. & Montoya, A. & López-Puente, J. & Santana, D., 2023. "Solar power tower plants with Bimetallic receiver tubes: A thermomechanical study of two- and three-layer composite tubes configurations," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025641
    DOI: 10.1016/j.energy.2023.129170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    2. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    3. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
    4. Khanna, Sourav & Newar, Sanjeev & Sharma, Vashi & Panigrahi, Pradipta Kumar & Mallick, Tapas K., 2018. "Deformation of receiver in solar parabolic trough collector due to non uniform temperature and solar flux distribution and use of bimetallic absorber tube with multiple supports," Energy, Elsevier, vol. 165(PA), pages 1078-1088.
    5. Zuo, Yuhang & Li, Yawei & Zhou, Hao, 2022. "Numerical study on preheating process of molten salt tower receiver in windy conditions," Energy, Elsevier, vol. 251(C).
    6. Fernández-Torrijos, M. & González-Gómez, P.A. & Sobrino, C. & Santana, D., 2021. "Economic and thermo-mechanical design of tubular sCO2 central-receivers," Renewable Energy, Elsevier, vol. 177(C), pages 1087-1101.
    7. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    8. Du, Shen & Wang, Zexiao & Shen, Sheng, 2022. "Thermal and structural evaluation of composite solar receiver tubes for Gen3 concentrated solar power systems," Renewable Energy, Elsevier, vol. 189(C), pages 117-128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
    2. Ma, Teng & Li, Ming-Jia & Xu, Hang, 2024. "Thermal energy storage capacity configuration and energy distribution scheme for a 1000MWe S–CO2 coal-fired power plant to realize high-efficiency full-load adjustability," Energy, Elsevier, vol. 294(C).
    3. Jiang, Rui & Li, Ming-Jia & Wang, Wen-Qi & Li, Meng-Jie & Ma, Teng, 2024. "A novel numerical methodology of solar power tower system for dynamic characteristics analysis and performance prediction," Energy, Elsevier, vol. 292(C).
    4. Sun, Lei & Tang, Bo & Xie, Yonghui, 2022. "Performance assessment of two compressed and liquid carbon dioxide energy storage systems: Thermodynamic, exergoeconomic analysis and multi-objective optimization," Energy, Elsevier, vol. 256(C).
    5. Sun, Yan & Li, Hong-Wei & Wang, Di & Du, Chang-He, 2024. "A novel zero carbon emission system based on the complementary utilization of solar energy and hydrogen," Applied Energy, Elsevier, vol. 356(C).
    6. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    7. Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
    8. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    9. Tang, X.Y. & Yang, W.W. & Yang, Y. & Jiao, Y.H. & Zhang, T., 2021. "A design method for optimizing the secondary reflector of a parabolic trough solar concentrator to achieve uniform heat flux distribution," Energy, Elsevier, vol. 229(C).
    10. Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
    11. Paul Tafur-Escanta & Robert Valencia-Chapi & Ignacio López-Paniagua & Luis Coco-Enríquez & Javier Muñoz-Antón, 2021. "Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants," Energies, MDPI, vol. 14(13), pages 1-27, July.
    12. Niu, Xiaojuan & Ma, Ning & Bu, Zhengkun & Hong, Wenpeng & Li, Haoran, 2022. "Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application," Energy, Elsevier, vol. 254(PA).
    13. Yang, Jingze & Yu, Zitao & Yao, Hong, 2023. "Efficient turbomachinery layout design and performance comparison of supercritical CO2 cycles for high-temperature concentrated solar power plants under peak-shaving scenarios," Energy, Elsevier, vol. 285(C).
    14. Tafur-Escanta, Paul & López-Paniagua, Ignacio & Muñoz-Antón, Javier, 2023. "Thermodynamics analysis of the supercritical CO2 binary mixtures for Brayton power cycles," Energy, Elsevier, vol. 270(C).
    15. Yu Qiu & Erqi E & Qing Li, 2023. "Triple-Objective Optimization of SCO 2 Brayton Cycles for Next-Generation Solar Power Tower," Energies, MDPI, vol. 16(14), pages 1-19, July.
    16. Jobel Jose & Rajesh Kanna Parthasarathy & Senthil Kumar Arumugam, 2023. "Energy and Exergy Analysis of a Combined Cooling Heating and Power System with Regeneration," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    17. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    18. Adis Puška & Miroslav Nedeljković & Branislav Dudić & Anđelka Štilić & Alexandra Mittelman, 2024. "Improving Agricultural Sustainability in Bosnia and Herzegovina through Renewable Energy Integration," Economies, MDPI, vol. 12(8), pages 1-15, July.
    19. Thanganadar, Dhinesh & Fornarelli, Francesco & Camporeale, Sergio & Asfand, Faisal & Patchigolla, Kumar, 2021. "Off-design and annual performance analysis of supercritical carbon dioxide cycle with thermal storage for CSP application," Applied Energy, Elsevier, vol. 282(PA).
    20. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.