IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924015939.html
   My bibliography  Save this article

Novel solar-based cogeneration system: Parabolic trough integrating supercritical Brayton and organic Rankine cycles with membrane distillation

Author

Listed:
  • Zaharil, Hafiz Aman
  • Yang, Hongxing

Abstract

This research addresses advancements towards third-generation concentrated solar power (CSP) systems, highlighting the critical need for improved system efficiency through advanced power cycles and optimized waste heat utilisation. By integrating a direct parabolic trough solar collector (PTSC) with a supercritical CO₂ (sCO₂) Brayton cycle and direct contact membrane distillation (DCMD), coupled with a bottoming organic Rankine cycle (ORC), this study proposed a novel solution for the co-generation of power and clean water. Innovative design and optimisation methodologies for the integrated system were introduced, and a comprehensive mathematical model was developed and validated, facilitating a comparative analysis of various ORC fluids' techno-economic performance. The investigation revealed that under baseline conditions, neopentane and isobutane demonstrated slightly better cycle's net-work, whereas toluene showed significantly higher water production due to the higher mass flow rate of seawater needed, resulting from the lower condenser inlet temperature. Furthermore, parametric analysis revealed that varying ambient temperatures resulted in different optimal fluids, with cyclohexane, n-octane, n-nonane, and n-heptane achieving the highest thermal efficiency of around 36.52% at 10°C. Additionally, this study highlighted substantial exergy destruction in the DCMD desalination process, accounting for 63.12% of the exergy destruction in the bottoming cycle, predominantly at the membrane where approximately 67% occurred. Moreover, the second compression and expansion stages, especially at higher Direct Normal Irradiance (DNI) levels, contributed the most to exergetic destruction in the topping cycle. Significantly, the double cycle showed exergetic efficiency improvements between 0.12% and 0.35% across different DNI levels while in contrast, single cycles demonstrated marginally superior water production capacity. Economic analyses using bare module costing to assess the levelized cost of electricity and water, along with net present value calculations, revealed that varying ambient temperatures resulted in different optimised fluids. Notably, n-octane achieved the highest net present value, approximately 4.53% above baseline conditions, at an ambient temperature of 10°C. Finally, recommendations for organic fluids for each ambient temperature based on techno-economic optimisation were detailed.

Suggested Citation

  • Zaharil, Hafiz Aman & Yang, Hongxing, 2024. "Novel solar-based cogeneration system: Parabolic trough integrating supercritical Brayton and organic Rankine cycles with membrane distillation," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924015939
    DOI: 10.1016/j.apenergy.2024.124210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924015939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.