IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v328y2022ics0306261922014477.html
   My bibliography  Save this article

Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power

Author

Listed:
  • Zhang, Yifan
  • Li, Hongzhi
  • Li, Kailun
  • Yang, Yu
  • Zhou, Yujia
  • Zhang, Xuwei
  • Xu, Ruina
  • Zhuge, Weilin
  • Lei, Xianliang
  • Dan, Guangju

Abstract

The supercritical CO2 (sCO2) Brayton cycle has the advantages of high efficiency, good flexibility and compact equipment, and is widely regarded as the ideal power cycle for the new generation concentrating solar power (CSP). The application scenario of the CSP determines that the unit's fast peak shaving capability must be considered. In this paper, a dynamic simulation model was developed for an indirect-heated 800 °C/550 °C sCO2 CSP test plant, containing a particle heat storage system. The effects of control modes of heating power, cooling power, mass flow rate (m), turbine rotational speed and sCO2 inventory on the system dynamic characteristics were researched. It was found that the control mode of changing particle/water mass flow rate had a significantly faster response speed than changing temperature. Using the turbine optimal rotational speed control mode could improve the net cycle efficiency from 15.30% to 16.12%, in a continuous linear load reduction process. The sCO2 inventory control module played a crucial role in limiting the fluctuation of compressor inlet pressure. The regulation mode of changing m and turbine inlet temperature (T4) synchronously and that of changing m with constant T4 were all proved to achieve the goal of fast peak shaving well, but the latter one was safer, which could greatly limit the temperature change rate of sCO2 and equipment in the fast peak shaving process. Our work not only offers an operation solution for the sCO2 CSP test plant, but also gives guidance for the efficient, flexible and safe design of the third generation CSP plants.

Suggested Citation

  • Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Zhou, Yujia & Zhang, Xuwei & Xu, Ruina & Zhuge, Weilin & Lei, Xianliang & Dan, Guangju, 2022. "Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power," Applied Energy, Elsevier, vol. 328(C).
  • Handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014477
    DOI: 10.1016/j.apenergy.2022.120190
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Linares, José I. & Montes, María J. & Cantizano, Alexis & Sánchez, Consuelo, 2020. "A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants," Applied Energy, Elsevier, vol. 263(C).
    2. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    3. He, Ya-Ling & Qiu, Yu & Wang, Kun & Yuan, Fan & Wang, Wen-Qi & Li, Ming-Jia & Guo, Jia-Qi, 2020. "Perspective of concentrating solar power," Energy, Elsevier, vol. 198(C).
    4. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2020. "Off-design performance of a supercritical CO2 Brayton cycle integrated with a solar power tower system," Energy, Elsevier, vol. 201(C).
    5. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    6. Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
    7. Wang, Zhifeng, 2010. "Prospectives for China's solar thermal power technology development," Energy, Elsevier, vol. 35(11), pages 4417-4420.
    8. Ma, Yuegeng & Morosuk, Tatiana & Liu, Ming & Liu, Jiping, 2020. "Development and comparison of control schemes for the off-design operation of a recompression supercritical CO2 cycle with an intercooled main compressor," Energy, Elsevier, vol. 211(C).
    9. Xu, Jinliang & Sun, Enhui & Li, Mingjia & Liu, Huan & Zhu, Bingguo, 2018. "Key issues and solution strategies for supercritical carbon dioxide coal fired power plant," Energy, Elsevier, vol. 157(C), pages 227-246.
    10. Singh, Rajinesh & Kearney, Michael P. & Manzie, Chris, 2013. "Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant," Energy, Elsevier, vol. 60(C), pages 380-387.
    11. Heller, Lukas & Glos, Stefan & Buck, Reiner, 2022. "Techno-economic selection and initial evaluation of supercritical CO2 cycles for particle technology-based concentrating solar power plants," Renewable Energy, Elsevier, vol. 181(C), pages 833-842.
    12. Zhang, Yifan & Li, Hongzhi & Han, Wanlong & Bai, Wengang & Yang, Yu & Yao, Mingyu & Wang, Yueming, 2018. "Improved design of supercritical CO2 Brayton cycle for coal-fired power plant," Energy, Elsevier, vol. 155(C), pages 1-14.
    13. Luu, Minh Tri & Milani, Dia & McNaughton, Robbie & Abbas, Ali, 2017. "Dynamic modelling and start-up operation of a solar-assisted recompression supercritical CO2 Brayton power cycle," Applied Energy, Elsevier, vol. 199(C), pages 247-263.
    14. Iverson, Brian D. & Conboy, Thomas M. & Pasch, James J. & Kruizenga, Alan M., 2013. "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Elsevier, vol. 111(C), pages 957-970.
    15. Han, Wanlong & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Wang, Yueming & Feng, Zhenping & Zhou, Dong & Dan, Guangju, 2019. "Aerodynamic design of the high pressure and low pressure axial turbines for the improved coal-fired recompression SCO2 reheated Brayton cycle," Energy, Elsevier, vol. 179(C), pages 442-453.
    16. Bian, Xingyan & Wang, Xuan & Wang, Rui & Cai, Jinwen & Tian, Hua & Shu, Gequn & Lin, Zhimin & Yu, Xiangyu & Shi, Lingfeng, 2022. "A comprehensive evaluation of the effect of different control valves on the dynamic performance of a recompression supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 248(C).
    17. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    18. Zhao, Yuxuan & Liu, Shengyuan & Lin, Zhenzhi & Wen, Fushuan & Ding, Yi, 2021. "Coordinated scheduling strategy for an integrated system with concentrating solar power plants and solar prosumers considering thermal interactions and demand flexibilities," Applied Energy, Elsevier, vol. 304(C).
    19. Fan, Gang & Du, Yang & Li, Hang & Dai, Yiping, 2021. "Off-design behavior investigation of the combined supercritical CO2 and organic Rankine cycle," Energy, Elsevier, vol. 237(C).
    20. Jiang, Yuan & Liese, Eric & Zitney, Stephen E. & Bhattacharyya, Debangsu, 2018. "Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles," Applied Energy, Elsevier, vol. 231(C), pages 1019-1032.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Bingtao & Yao, Jiacheng & Su, Yaxin, 2023. "Performance response to operating-load fluctuations for Sub-megawatt-scale recuperated supercritical CO2 Brayton cycles: Characteristics and improvement," Renewable Energy, Elsevier, vol. 206(C), pages 686-693.
    2. Zhou, Yujia & Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Sun, Shan & Wu, Shuaishuai, 2024. "Off-design operation of supercritical CO2 Brayton cycle arranged with single and multiple turbomachinery shafts for lead-cooled fast reactor," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    2. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    3. Ma, Ning & Bu, Zhengkun & Fu, Yanan & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "An operation strategy and off-design performance for supercritical brayton cycle using CO2-propane mixture in a direct-heated solar power tower plant," Energy, Elsevier, vol. 278(PA).
    4. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    5. Merchán, R.P. & Santos, M.J. & Medina, A. & Calvo Hernández, A., 2022. "High temperature central tower plants for concentrated solar power: 2021 overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Ma, Teng & Li, Ming-Jia & Xu, Hang, 2024. "Thermal energy storage capacity configuration and energy distribution scheme for a 1000MWe S–CO2 coal-fired power plant to realize high-efficiency full-load adjustability," Energy, Elsevier, vol. 294(C).
    7. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    8. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Yao, Lichao & Zou, Zhengping, 2020. "A one-dimensional design methodology for supercritical carbon dioxide Brayton cycles: Integration of cycle conceptual design and components preliminary design," Applied Energy, Elsevier, vol. 276(C).
    10. Li, Hongzhi & Zhang, Yifan & Yao, Mingyu & Yang, Yu & Han, Wanlong & Bai, Wengang, 2019. "Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop," Energy, Elsevier, vol. 174(C), pages 792-804.
    11. Zhou, Yujia & Zhang, Yifan & Li, Hongzhi & Li, Kailun & Yang, Yu & Sun, Shan & Wu, Shuaishuai, 2024. "Off-design operation of supercritical CO2 Brayton cycle arranged with single and multiple turbomachinery shafts for lead-cooled fast reactor," Energy, Elsevier, vol. 299(C).
    12. Uusitalo, Antti & Turunen-Saaresti, Teemu & Grönman, Aki, 2021. "Design and loss analysis of radial turbines for supercritical CO2 Brayton cycles," Energy, Elsevier, vol. 230(C).
    13. Chen, Zhewen & Wang, Yanjuan & Zhang, Xiaosong & Xu, Jinliang, 2020. "The energy-saving mechanism of coal-fired power plant with S–CO2 cycle compared to steam-Rankine cycle," Energy, Elsevier, vol. 195(C).
    14. Zhao, Bingtao & Yao, Jiacheng & Su, Yaxin, 2023. "Performance response to operating-load fluctuations for Sub-megawatt-scale recuperated supercritical CO2 Brayton cycles: Characteristics and improvement," Renewable Energy, Elsevier, vol. 206(C), pages 686-693.
    15. Ehsan, M. Monjurul & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2020. "Feasibility of dry cooling in supercritical CO2 power cycle in concentrated solar power application: Review and a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Chen, Rui & Romero, Manuel & González-Aguilar, José & Rovense, Francesco & Rao, Zhenghua & Liao, Shengming, 2022. "Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance," Renewable Energy, Elsevier, vol. 189(C), pages 164-179.
    17. Fang, Wenchao & Chen, Sheng & Shi, Shuo, 2022. "Dynamic characteristics and real-time control of a particle-to-sCO2 moving bed heat exchanger assisted by BP neural network," Energy, Elsevier, vol. 256(C).
    18. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2021. "Load matching and techno-economic analysis of CSP plant with S–CO2 Brayton cycle in CSP-PV-wind hybrid system," Energy, Elsevier, vol. 223(C).
    19. Du, Yadong & Yang, Ce & Zhao, Ben & Gao, Jianbing & Hu, Chenxing & Zhang, Hanzhi & Zhao, Wei, 2022. "Dynamic characteristics of a recompression supercritical CO2 cycle against variable operating conditions and temperature fluctuations of reactor outlet coolant," Energy, Elsevier, vol. 258(C).
    20. Ehsan, M. Monjurul & Duniam, Sam & Li, Jishun & Guan, Zhiqiang & Gurgenci, Hal & Klimenko, Alexander, 2019. "Effect of cooling system design on the performance of the recompression CO2 cycle for concentrated solar power application," Energy, Elsevier, vol. 180(C), pages 480-494.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.