IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223019096.html
   My bibliography  Save this article

Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics

Author

Listed:
  • Wei, Dechen
  • Jiao, Yuanyuan
  • Zhang, Ning
  • Fan, Yukun

Abstract

This study investigates the influence of a wedge shock generator on hydrogen mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics (CFD). The fuel mixing process is crucial for efficient combustion in scramjet engines, which operate at high speeds and require rapid mixing of fuel and air. The shock generator is a device that generates a shock wave in the flow field, which can enhance mixing by increasing turbulence and promoting the fuel penetration into the air stream. A comparison of three lobe injectors is done to attain the efficient nozzle type for the fuel mixing inside the combustion chamber. CFD simulations were done to analyze the consequence of the shock generator on fuel mixing in the nozzle and assess its potential for improving combustion efficiency. The results show that the usage of shock generator can significantly enhance fuel-air mixing in the nozzle, leading to improved combustion efficiency and reduced emissions. The findings of this study provide valuable insights into the design and optimization of shock generators for scramjet engines, which can contribute to the development of more efficient and sustainable air-breathing propulsion systems.

Suggested Citation

  • Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Fan, Yukun, 2023. "Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019096
    DOI: 10.1016/j.energy.2023.128515
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhixiong & Manh, Tran Dinh & Barzegar Gerdroodbary, Mostafa & Nam, Nguyen Dang & Moradi, R. & Babazadeh, Houman, 2020. "The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow," Energy, Elsevier, vol. 193(C).
    2. F. Pish & Tran Dinh Manh & M. Barzegar Gerdroodbary & Nguyen Dang Nam & Rasoul Moradi & Houman Babazadeh, 2020. "Computational study of the cavity flow over sharp nose cone in supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(06), pages 1-12, June.
    3. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    4. Amin Hassanvand & M. Barzegar Gerdroodbary & Amir Musa Abazari, 2021. "Injection of hydrogen sonic multi-jet on inclined surface at supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-14, March.
    5. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    6. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    7. Peng, Yeping & Barzegar Gerdroodbary, M. & Sheikholeslami, M. & Shafee, Ahmad & Babazadeh, Houman & Moradi, R., 2020. "Mixing enhancement of the multi hydrogen fuel jets by the backward step," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    2. Huang, Dian, 2024. "Using extruded circular multi-injectors to improve fuel jet mixing and distribution in combustion chambers of scramjet," Energy, Elsevier, vol. 288(C).
    3. Dai, Zuocai & Zou, Yunhe & Chow, Limeng, 2024. "The role of the shock generator on the mixing performance of hydrogen jet released from the extruded transverse 3-lobe nozzle in a scramjet engine," Energy, Elsevier, vol. 288(C).
    4. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    5. Ben Ali, Naim & Basem, Ali & Ghodratallah, Pooya & Singh, Pradeep Kumar & jasim, Dheyaa J. & Sultan, Abbas J. & Eladeb, Aboulbaba & Kolsi, Lioua & El-Shafay, A.S., 2024. "The usage of non-aligned multi-circular winding injectors for efficient fuel mixing inside the scramjet engine," Energy, Elsevier, vol. 298(C).
    6. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    7. Peng, Yeping & Barzegar Gerdroodbary, M. & Sheikholeslami, M. & Shafee, Ahmad & Babazadeh, Houman & Moradi, R., 2020. "Mixing enhancement of the multi hydrogen fuel jets by the backward step," Energy, Elsevier, vol. 203(C).
    8. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    9. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    10. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    11. Zhang, Liwu & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Ghanbari, Afshin, 2023. "Simultaneous prediction of CO2, CO, and NOx emissions of biodiesel-hydrogen blend combustion in compression ignition engines by supervised machine learning tools," Energy, Elsevier, vol. 282(C).
    12. Feng, Yanbin & Luo, Shibin & Song, Jiawen & Xu, Dequan, 2023. "Numerical investigation on flow and mixing characteristics of powder fuel under strong shear and shock wave interaction," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.