IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224032249.html
   My bibliography  Save this article

Multi-fidelity data mining-based design optimization framework for scramjet-based aircraft

Author

Listed:
  • Leng, Jun-xue
  • Shen, Yang
  • Huang, Wei
  • An, Kai
  • Zhou, Can-can
  • Wang, Zhen-guo

Abstract

Aircraft design faces complex multidisciplinary problems and often involves numerous design variables, making direct optimization a time-consuming task. With the development of big data and machine learning technologies, using data mining methods to assist optimization has become key to addressing the inefficiency in multidisciplinary design optimization (MDO). To address the high cost of data acquisition in current data mining, this paper proposes an aircraft design optimization framework based on multi-fidelity data mining, using a large amount of inexpensive cursory estimation data to execute the MDO process and form a multidisciplinary optimization database. Then, data mining methods are used to decouple disciplinary relationships, transforming multidisciplinary coupling problems into simpler multi-objective problems. Subsequently, under viscous CFD computation conditions, the EDGE-p-BFFD deformation method is used to fine-tune the obtained configurations, further enhancing multidisciplinary performance. Before both optimizations, data mining methods were used to analyze the impact of design variables on objective functions, forming design knowledge and completing variable selection. In the multidisciplinary optimization practice of airbreathing aircraft, it can be found that the proposed framework effectively achieves disciplinary decoupling and explores the relationship between shape and performance. In the multidisciplinary optimization of the waverider based on cursory estimations, particle swarm optimization increased the aircraft's cruising range by 8.74 %. In the multi-objective optimization of the lifting body based on viscous CFD calculations, data mining was used to transform the problem into several key objectives. The MOEA/D algorithm increased the range by 2.9 %, validating the effectiveness of the data mining-based MDO framework proposed in this paper.

Suggested Citation

  • Leng, Jun-xue & Shen, Yang & Huang, Wei & An, Kai & Zhou, Can-can & Wang, Zhen-guo, 2024. "Multi-fidelity data mining-based design optimization framework for scramjet-based aircraft," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032249
    DOI: 10.1016/j.energy.2024.133448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    2. Zhang, Tiantian & Yan, Xiaoting & Huang, Wei & Che, Xueke & Wang, Zhenguo, 2021. "Multidisciplinary design optimization of a wide speed range vehicle with waveride airframe and RBCC engine," Energy, Elsevier, vol. 235(C).
    3. Oruc, Ridvan & Baklacioglu, Tolga, 2024. "Cruise range modeling of different flight strategies for transport aircraft using genetic algorithms and particle swarm optimization," Energy, Elsevier, vol. 294(C).
    4. Leng, Jun-xue & Wang, Zhen-guo & Huang, Wei, 2024. "Design and investigation on the combined two-stage waverider equipped with rocket and scramjet engine," Energy, Elsevier, vol. 304(C).
    5. Amin Hassanvand & M. Barzegar Gerdroodbary & Amir Musa Abazari, 2021. "Injection of hydrogen sonic multi-jet on inclined surface at supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-14, March.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leng, Jun-xue & Wang, Zhen-guo & Huang, Wei, 2024. "Design and investigation on the combined two-stage waverider equipped with rocket and scramjet engine," Energy, Elsevier, vol. 304(C).
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    4. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    5. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    6. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    7. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    8. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    9. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    10. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    11. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    17. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    18. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    19. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    20. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.