IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics036054422030966x.html
   My bibliography  Save this article

Mixing enhancement of the multi hydrogen fuel jets by the backward step

Author

Listed:
  • Peng, Yeping
  • Barzegar Gerdroodbary, M.
  • Sheikholeslami, M.
  • Shafee, Ahmad
  • Babazadeh, Houman
  • Moradi, R.

Abstract

For the improvement of the present high-speed vehicles, fuel mixing is the significant process in the combustor. Current article employed numerical tools to scrutinize the role of the upstream step condition on the mixing efficiency of the multi hydrogen jets within the scramjet. This work tries to disclose the impact of the free-stream Mach and multi-jet arrangements on the feature of the fuel jets. Besides, the fuel mixing efficiency of the step condition is studied in the downstream of the jets. To do this, a three-dimensional model is considered to ensure that the real physics of the problem associated with hydrogen jets and freestream is considered. To solve the problem, RANS equations are chosen, and the SST approach is selected for the calculation of the viscosity in high-speed flow. The fuel jet has been injected within four multi sonic injectors and the free stream Mach number (Ma) is within 3–4. The computational simulations show that the impact of the step condition declines as the free-stream Ma is increased. Besides, the impact of the step on the fuel mixing enhances when the pressure ratio of the jets declines. Our findings show that fuel mixing in region of the fuel injection declines as the jet space increases from 4 Dj to 10 Dj while the downstream mixing efficiency enhances up to 28%.

Suggested Citation

  • Peng, Yeping & Barzegar Gerdroodbary, M. & Sheikholeslami, M. & Shafee, Ahmad & Babazadeh, Houman & Moradi, R., 2020. "Mixing enhancement of the multi hydrogen fuel jets by the backward step," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s036054422030966x
    DOI: 10.1016/j.energy.2020.117859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030966X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Zhao-bo & Huang, Wei & Yan, Li, 2019. "Parametric study on mixing augmentation mechanism induced by air injection in a shock-induced combustion ramjet engine," Energy, Elsevier, vol. 186(C).
    2. Wang, P. & Li, J.B. & Bai, F.W. & Liu, D.Y. & Xu, C. & Zhao, L. & Wang, Z.F., 2017. "Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver," Energy, Elsevier, vol. 119(C), pages 652-661.
    3. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    4. Yu, Dongmin & Zhu, Haoming & Han, Wenqi & Holburn, Daniel, 2019. "Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system," Energy, Elsevier, vol. 173(C), pages 554-568.
    5. Li, Zhixiong & Manh, Tran Dinh & Barzegar Gerdroodbary, Mostafa & Nam, Nguyen Dang & Moradi, R. & Babazadeh, Houman, 2020. "The effect of sinusoidal wall on hydrogen jet mixing rate considering supersonic flow," Energy, Elsevier, vol. 193(C).
    6. F. Pish & Tran Dinh Manh & M. Barzegar Gerdroodbary & Nguyen Dang Nam & Rasoul Moradi & Houman Babazadeh, 2020. "Computational study of the cavity flow over sharp nose cone in supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(06), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    2. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    3. Feng, Yanbin & Luo, Shibin & Song, Jiawen & Xu, Dequan, 2023. "Numerical investigation on flow and mixing characteristics of powder fuel under strong shear and shock wave interaction," Energy, Elsevier, vol. 263(PE).
    4. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    5. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    6. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Fan, Yukun, 2023. "Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    2. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    3. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    4. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Fan, Yukun, 2023. "Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics," Energy, Elsevier, vol. 283(C).
    5. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    6. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    7. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    8. Huang, Dian, 2024. "Using extruded circular multi-injectors to improve fuel jet mixing and distribution in combustion chambers of scramjet," Energy, Elsevier, vol. 288(C).
    9. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    10. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    11. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    12. Ben Ali, Naim & Basem, Ali & Ghodratallah, Pooya & Singh, Pradeep Kumar & jasim, Dheyaa J. & Sultan, Abbas J. & Eladeb, Aboulbaba & Kolsi, Lioua & El-Shafay, A.S., 2024. "The usage of non-aligned multi-circular winding injectors for efficient fuel mixing inside the scramjet engine," Energy, Elsevier, vol. 298(C).
    13. Guilong Dai & Jiangfei Huangfu & Xiaoyu Wang & Shenghua Du & Tian Zhao, 2023. "A Review of Radiative Heat Transfer in Fixed-Bed Particle Solar Receivers," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    14. Wang, Jikang & Zhang, Yuanting & Zhang, Weichen & Qiu, Yu & Li, Qing, 2022. "Design and evaluation of a lab-scale tungsten receiver for ultra-high-temperature solar energy harvesting," Applied Energy, Elsevier, vol. 327(C).
    15. Ou, Kai & Yuan, Wei-Wei & Kim, Young-Bae, 2021. "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, Elsevier, vol. 219(C).
    16. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    17. Liu, Xianglei & Cheng, Bo & Zhu, Qibin & Gao, Ke & Sun, Nan & Tian, Cheng & Wang, Jiaqi & Zheng, Hangbin & Wang, Xinrui & Dang, Chunzhuo & Xuan, Yimin, 2022. "Highly efficient solar-driven CO2 reforming of methane via concave foam reactors," Energy, Elsevier, vol. 261(PB).
    18. Ding, Hongbing & Zhang, Yu & Sun, Chunqian & Yang, Yan & Wen, Chuang, 2022. "Numerical simulation of supersonic condensation flows using Eulerian-Lagrangian and Eulerian wall film models," Energy, Elsevier, vol. 258(C).
    19. Qinjin Zhang & Xuzhou Zhuang & Yancheng Liu & Chuan Wang & Haohao Guo, 2019. "A Novel Autonomous Current-Sharing Control Strategy for Multiple Paralleled DC–DC Converters in Islanded DC Microgrid," Energies, MDPI, vol. 12(20), pages 1-22, October.
    20. Chaudhary, Aniket Karan & Roy, Satyabrata & Guha, Dipayan & Negi, Richa & Banerjee, Subrata, 2024. "Adaptive cyber-tolerant finite-time frequency control framework for renewable-integrated power system under deception and periodic denial-of-service attacks," Energy, Elsevier, vol. 302(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s036054422030966x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.