IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v306y2024ics0360544224021637.html
   My bibliography  Save this article

Computational study of transverse oblique injectors for improvement of fuel mixing in scramjet engine of supersonic vehicles

Author

Listed:
  • Wang, Haicui
  • Ma, Zhimin
  • Bian, Jing
  • Cao, Liang
  • Tan, Ji-Ke
  • Li, Dong

Abstract

The efficient injection of fuel in the combustion chamber is significant for the advancement of the current supersonic vehicles. This study has focused on the role of non-alignment injector configuration on the fuel mixing of the hydrogen jet inside the combustion chamber of the scramjet engine. The fuel distribution and vortex generation behind both annular and coaxial jets are modeled and compared to disclose the mechanism of fuel diffusion in the combustion chamber. A three-dimensional model of two nozzle angles is produced to visualize the complicated flow interaction of four non-aligned circular jets at supersonic cross-flow. Our results indicate that the strength of the vortex pair produced by the core of the fuel jet is extended more when the angle of the nozzles is increased. The flow visualization of the jet also confirms that the flow becomes more complex in non-alignment jet configurations and fuel mixing is improved by the addition of the internal air jet in the suggested injection model.

Suggested Citation

  • Wang, Haicui & Ma, Zhimin & Bian, Jing & Cao, Liang & Tan, Ji-Ke & Li, Dong, 2024. "Computational study of transverse oblique injectors for improvement of fuel mixing in scramjet engine of supersonic vehicles," Energy, Elsevier, vol. 306(C).
  • Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021637
    DOI: 10.1016/j.energy.2024.132389
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224021637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Pish & Tran Dinh Manh & M. Barzegar Gerdroodbary & Nguyen Dang Nam & Rasoul Moradi & Houman Babazadeh, 2020. "Computational study of the cavity flow over sharp nose cone in supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(06), pages 1-12, June.
    2. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    3. Amin Hassanvand & M. Barzegar Gerdroodbary & Amir Musa Abazari, 2021. "Injection of hydrogen sonic multi-jet on inclined surface at supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-14, March.
    4. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Dian, 2024. "Using extruded circular multi-injectors to improve fuel jet mixing and distribution in combustion chambers of scramjet," Energy, Elsevier, vol. 288(C).
    2. Ben Ali, Naim & Basem, Ali & Ghodratallah, Pooya & Singh, Pradeep Kumar & jasim, Dheyaa J. & Sultan, Abbas J. & Eladeb, Aboulbaba & Kolsi, Lioua & El-Shafay, A.S., 2024. "The usage of non-aligned multi-circular winding injectors for efficient fuel mixing inside the scramjet engine," Energy, Elsevier, vol. 298(C).
    3. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Gao, Hongyang & Yu, Hao, 2024. "The role of annular 2-lobe nozzle in a strut injection system on the mechanism of fuel distribution at a scramjet engine," Energy, Elsevier, vol. 301(C).
    4. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Fan, Yukun, 2023. "Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics," Energy, Elsevier, vol. 283(C).
    5. Dai, Zuocai & Zou, Yunhe & Chow, Limeng, 2024. "The role of the shock generator on the mixing performance of hydrogen jet released from the extruded transverse 3-lobe nozzle in a scramjet engine," Energy, Elsevier, vol. 288(C).
    6. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    7. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    8. Leng, Jun-xue & Wang, Zhen-guo & Huang, Wei, 2024. "Design and investigation on the combined two-stage waverider equipped with rocket and scramjet engine," Energy, Elsevier, vol. 304(C).
    9. Peng, Yeping & Barzegar Gerdroodbary, M. & Sheikholeslami, M. & Shafee, Ahmad & Babazadeh, Houman & Moradi, R., 2020. "Mixing enhancement of the multi hydrogen fuel jets by the backward step," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.