IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipes0360544222029474.html
   My bibliography  Save this article

Numerical investigation on flow and mixing characteristics of powder fuel under strong shear and shock wave interaction

Author

Listed:
  • Feng, Yanbin
  • Luo, Shibin
  • Song, Jiawen
  • Xu, Dequan

Abstract

In this investigation, the mixing process of powder fuel transverse jet and supersonic airflow are discussed. The effects of particle size and induced shock wave on flow and mixing characteristics are also analyzed. The Eulerian-Lagrange method is utilized to simulate the gas-solid two-phase supersonic flow field. This numerical method has been verified using experimental data and simulation data from the open literature. The results reveal that the powder fuel transverse jet interacts violently with the supersonic airflow and forms complex shock wave structures in the flow field. The motion and distribution of particles are affected by their size and the interaction of shock wave/particle. The powder fuel composed of small size particles enhances mixing performance and has less impact on stagnation pressure loss. The existence of induced shock waves leads to part of the particles into the cavity and the stagnation pressure loss is large. With the increase of induced shock wave intensity, the mixing performance of the local region is continuously improved. The case with the inclination angle of 30° owns the best effect with improving the mixing efficiency by 28.33%, but the total pressure loss is increased by 33.88%.

Suggested Citation

  • Feng, Yanbin & Luo, Shibin & Song, Jiawen & Xu, Dequan, 2023. "Numerical investigation on flow and mixing characteristics of powder fuel under strong shear and shock wave interaction," Energy, Elsevier, vol. 263(PE).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029474
    DOI: 10.1016/j.energy.2022.126061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222029474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    2. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    3. Du, Zhao-bo & Huang, Wei & Yan, Li, 2019. "Parametric study on mixing augmentation mechanism induced by air injection in a shock-induced combustion ramjet engine," Energy, Elsevier, vol. 186(C).
    4. Peng, Yeping & Barzegar Gerdroodbary, M. & Sheikholeslami, M. & Shafee, Ahmad & Babazadeh, Houman & Moradi, R., 2020. "Mixing enhancement of the multi hydrogen fuel jets by the backward step," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    2. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    3. Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
    4. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    5. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    6. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    7. Peng, Yeping & Barzegar Gerdroodbary, M. & Sheikholeslami, M. & Shafee, Ahmad & Babazadeh, Houman & Moradi, R., 2020. "Mixing enhancement of the multi hydrogen fuel jets by the backward step," Energy, Elsevier, vol. 203(C).
    8. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Fan, Yukun, 2023. "Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics," Energy, Elsevier, vol. 283(C).
    9. Li, Zhengqi & Liu, Zheng & Huang, Haolin & Du, He & Chen, Zhichao, 2024. "The effects of key parameters on the gas/particle flows characteristics in the furnace of a Foster Wheeler down-fired boiler retrofitted with novel low-load stable combustion technology," Energy, Elsevier, vol. 288(C).
    10. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222029474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.