IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v32y2021i03ns0129183121500431.html
   My bibliography  Save this article

Injection of hydrogen sonic multi-jet on inclined surface at supersonic flow

Author

Listed:
  • Amin Hassanvand

    (Department of Polymer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran)

  • M. Barzegar Gerdroodbary

    (#x2020;Department of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran)

  • Amir Musa Abazari

    (#x2021;Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran)

Abstract

The efficient fuel injection system is a vital part of scramjet for a high-speed flight. In this scientific study, the effects of the multi fuel jets on the inclined surface are investigated at the supersonic air stream with Mach=4. This study employed the CFD technique for the simulation of the interaction of multi hydrogen-jets with free stream airflow. The impressions of inclined surface angle and hydrogen jet total pressure on the fuel mixing zone are disclosed. The Mach contour on the jet plane is presented to describe the chief terms on the distribution and penetration of hydrogen jet inside the combustion chamber. To perform a 3D computational study, the RANS equation with the SST turbulence model is used. Our study shows that the mixing performance of multi jets enhances in high jet pressure when the angle of the tending exterior is raised. Our findings also demonstrate that power and slant of the separation shock is highly effective on the size of the mixing zone.

Suggested Citation

  • Amin Hassanvand & M. Barzegar Gerdroodbary & Amir Musa Abazari, 2021. "Injection of hydrogen sonic multi-jet on inclined surface at supersonic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(03), pages 1-14, March.
  • Handle: RePEc:wsi:ijmpcx:v:32:y:2021:i:03:n:s0129183121500431
    DOI: 10.1142/S0129183121500431
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183121500431
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183121500431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Lianghua & Liu, Xiaoliang & Liu, Haoyang & Alizadeh, As'ad & Shamsborhan, Mahmoud, 2023. "The influence of the struts on mass diffusion system of lateral hydrogen micro jet in combustor of scramjet engine: Numerical study," Energy, Elsevier, vol. 279(C).
    2. Ben Ali, Naim & Basem, Ali & Ghodratallah, Pooya & Singh, Pradeep Kumar & jasim, Dheyaa J. & Sultan, Abbas J. & Eladeb, Aboulbaba & Kolsi, Lioua & El-Shafay, A.S., 2024. "The usage of non-aligned multi-circular winding injectors for efficient fuel mixing inside the scramjet engine," Energy, Elsevier, vol. 298(C).
    3. Li, Yaohui & Zhu, Guanghui & Chao, Yanpu & Chen, Liangbin & Alizadeh, As'ad, 2023. "Comparison of the different shapes of extruded annular nozzle on the fuel mixing of the hydrogen jet at supersonic combustion chamber," Energy, Elsevier, vol. 281(C).
    4. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Gao, Hongyang & Yu, Hao, 2024. "The role of annular 2-lobe nozzle in a strut injection system on the mechanism of fuel distribution at a scramjet engine," Energy, Elsevier, vol. 301(C).
    5. Huang, Dian, 2024. "Using extruded circular multi-injectors to improve fuel jet mixing and distribution in combustion chambers of scramjet," Energy, Elsevier, vol. 288(C).
    6. Wei, Dechen & Jiao, Yuanyuan & Zhang, Ning & Fan, Yukun, 2023. "Effect of shock generator on fuel mixing in an annular single lobe transverse nozzle at the supersonic combustion chamber of a scramjet engine using computational fluid dynamics," Energy, Elsevier, vol. 283(C).
    7. Dai, Zuocai & Zou, Yunhe & Chow, Limeng, 2024. "The role of the shock generator on the mixing performance of hydrogen jet released from the extruded transverse 3-lobe nozzle in a scramjet engine," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:32:y:2021:i:03:n:s0129183121500431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.