IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223018480.html
   My bibliography  Save this article

Optimization of hybrid energy management system based on high-energy solid-state lithium batteries and reversible fuel cells

Author

Listed:
  • Li, Xue
  • Li, Minghai
  • Habibi, Mostafa
  • Najaafi, Neda
  • Safarpour, Hamed

Abstract

Integrating a high power source, like a super capacitor (SCAP), and a lithium-ion battery (LIB) for electric vehicle (EV) applications yields achievement improvements, including maximum reliability, long lifetime (LT), small size, and competitive pricing for the overall source. A hybrid energy storage system (ESS) controlled by an intelligent energy management strategy (EMS) may be substantially included in multi-source EV design and development. Therefore, this paper proposes a hybrid chimp optimization algorithm (ChOA) and Levy walk technique to create an optimum EMS. The proposed technique reduces battery power (BP) stress and increases the LT, which is accomplished by using a hybrid ChOA-Levy walk (ChOA-LW) optimization algorithm with a rule-based approach in accordance with understanding the performance of LIB and SCAP. In order to optimize the rule-based EMS's control settings, the latter strategy is suggested. The control approach can be implemented online once the offline optimization procedure is finished. The presented technique is evaluated via simulation and on an experimental platform by means of a power emulator testbed of a LIB/SCAP hybrid ESS. In terms of BP stress and LT, the findings are compared with a conventional rule-based approach and a mono-source containing a regular high-power LIB. Results obtained demonstrate the effectiveness of the suggested technique, which enables the requested performance to be satisfied with better energy utilization. The assessment results also show notable LT improvements for the LIB, an improvement of up to 19% over the mono-source in reference to a conventional single cell LIB.

Suggested Citation

  • Li, Xue & Li, Minghai & Habibi, Mostafa & Najaafi, Neda & Safarpour, Hamed, 2023. "Optimization of hybrid energy management system based on high-energy solid-state lithium batteries and reversible fuel cells," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018480
    DOI: 10.1016/j.energy.2023.128454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fengyan Yi & Dagang Lu & Xingmao Wang & Chaofeng Pan & Yuanxue Tao & Jiaming Zhou & Changli Zhao, 2022. "Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin’s Minimum Principle Considering Battery Degradation," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    2. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    3. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    4. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    6. Saiteja, Pemmareddy & Ashok, B., 2022. "Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sagar Hossain & Md. Rokonuzzaman & Kazi Sajedur Rahman & A. K. M. Ahasan Habib & Wen-Shan Tan & Md Mahmud & Shahariar Chowdhury & Sittiporn Channumsin, 2023. "Grid-Vehicle-Grid (G2V2G) Efficient Power Transmission: An Overview of Concept, Operations, Benefits, Concerns, and Future Challenges," Sustainability, MDPI, vol. 15(7), pages 1-24, March.
    2. Kunang Li & Chunchun Jia & Xuefeng Han & Hongwen He, 2023. "A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    3. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    5. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    6. Qi, Wei & Qin, Wenhu & Yun, Zhonghua, 2024. "Closed-loop state of charge estimation of Li-ion batteries based on deep learning and robust adaptive Kalman filter," Energy, Elsevier, vol. 307(C).
    7. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    8. Lai, Xin & Yao, Yi & Tang, Xiaopeng & Zheng, Yuejiu & Zhou, Yuanqiang & Sun, Yuedong & Gao, Furong, 2023. "Voltage profile reconstruction and state of health estimation for lithium-ion batteries under dynamic working conditions," Energy, Elsevier, vol. 282(C).
    9. K. A. Indu Sailaja & K. Rahimunnisa, 2024. "Analysis of energy management in a hybrid renewable power system using MOA technique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18989-19011, July.
    10. Guo, Ningyuan & Zhang, Wencan & Li, Junqiu & Chen, Zheng & Li, Jianwei & Sun, Chao, 2024. "Predictive energy management of fuel cell plug-in hybrid electric vehicles: A co-state boundaries-oriented PMP optimization approach," Applied Energy, Elsevier, vol. 362(C).
    11. Li, Lin & Zhang, Tiezhu & Lu, Liqun & Zhang, Hongxin & Yang, Jian & Zhang, Zhen, 2023. "An energy active regulation management strategy based on driving mode recognition for electro-hydraulic hybrid vehicles," Energy, Elsevier, vol. 285(C).
    12. Li, Li & Ling, Lei & Xie, Yajun & Zhou, Wencai & Wang, Tianbo & Zhang, Lanchun & Bei, Shaoyi & Zheng, Keqing & Xu, Qiang, 2023. "Comparative study of thermal management systems with different cooling structures for cylindrical battery modules: Side-cooling vs. terminal-cooling," Energy, Elsevier, vol. 274(C).
    13. Zhang, Hao & Gao, Jingyi & Kang, Le & Zhang, Yi & Wang, Licheng & Wang, Kai, 2023. "State of health estimation of lithium-ion batteries based on modified flower pollination algorithm-temporal convolutional network," Energy, Elsevier, vol. 283(C).
    14. Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    15. Zhang, Hao & Tong, Xiangqian & Yin, Jun & Blaabjerg, Frede, 2023. "Neural network-aided 4-DF global efficiency optimal control for the DAB converter based on the comprehensive loss model," Energy, Elsevier, vol. 262(PA).
    16. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    17. Zhang, Baodi & Chang, Liang & Teng, Teng & Chen, Qifang & Li, Qiangwei & Cao, Yaoguang & Yang, Shichun & Zhang, Xin, 2024. "Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 373(C).
    18. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    19. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    20. Shi, Dehua & Xu, Han & Wang, Shaohua & Hu, Jia & Chen, Long & Yin, Chunfang, 2024. "Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.