IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223017620.html
   My bibliography  Save this article

Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems

Author

Listed:
  • Cao, Meng
  • Sharma, Mukul M.

Abstract

A combination of hydraulic fracturing and horizontal wells is now being used to tap geothermal energy from naturally fractured reservoirs. Fully grid-based numerical models are currently used to simulate heat recovery from enhanced geothermal systems (EGS). Such models require a fine unstructured mesh and are computationally expensive. In this paper we present a computationally efficient model that allows us to accurately simulate fracture propagation, fluid flow, and heat transfer in networks of natural fractures that may be created in naturally fractured geothermal reservoirs.

Suggested Citation

  • Cao, Meng & Sharma, Mukul M., 2023. "Effect of fracture geometry, topology and connectivity on energy recovery from enhanced geothermal systems," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017620
    DOI: 10.1016/j.energy.2023.128368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223017620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Dejian & Tatomir, Alexandru & Niemi, Auli & Tsang, Chin-Fu & Sauter, Martin, 2022. "Study on the influence of randomly distributed fracture aperture in a fracture network on heat production from an enhanced geothermal system (EGS)," Energy, Elsevier, vol. 250(C).
    2. Cong, Ziyuan & Li, Yuwei & Pan, Yishan & Liu, Bo & Shi, Ying & Wei, Jianguang & Li, Wei, 2022. "Study on CO2 foam fracturing model and fracture propagation simulation," Energy, Elsevier, vol. 238(PB).
    3. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    4. Guo, Tiankui & Tang, Songjun & Sun, Jiang & Gong, Facheng & Liu, Xiaoqiang & Qu, Zhanqing & Zhang, Wei, 2020. "A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 258(C).
    5. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    6. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    7. Aliyu, Musa D. & Archer, Rosalind A., 2021. "Numerical simulation of multifracture HDR geothermal reservoirs," Renewable Energy, Elsevier, vol. 164(C), pages 541-555.
    8. D. J. Best & N. I. Fisher, 1979. "Efficient Simulation of the von Mises Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 152-157, June.
    9. Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Xie & Dongya Han & Jiangteng Li & Kaihui Li, 2024. "A State-of-the-Art Review of Hydraulic Fracturing in Geothermal Systems," Sustainability, MDPI, vol. 16(24), pages 1-39, December.
    2. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Chen, Zhangxin, 2024. "DC electric field assisted heat extraction evaluation via water circulation in abandoned production well patterns: Semi-analytical and numerical models," Renewable Energy, Elsevier, vol. 228(C).
    3. Chen, Yuedu & Liang, Weiguo, 2024. "The assessment of geothermal extraction efficiency for unstable alternation operation through thermal-hydro mechanical coupling simulations," Renewable Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    3. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    4. Li, Yuwei & Peng, Genbo & Du, Tong & Jiang, Liangliang & Kong, Xiang-Zhao, 2024. "Advancing fractured geothermal system modeling with artificial neural network and bidirectional gated recurrent unit," Applied Energy, Elsevier, vol. 372(C).
    5. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    6. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Yu, Ziwang & Hu, Zhongjun & Huang, Yibin, 2023. "Heat extraction performance of fractured geothermal reservoirs considering aperture variability," Energy, Elsevier, vol. 269(C).
    7. Hsieh, Jui-Ching & Li, Yi-Chen & Lin, Yu-Cheng & Yeh, Tzu-Chuan, 2024. "Off-design performance and economic analysis in coupled binary cycle with geothermal reservoir and turbo-expander," Energy, Elsevier, vol. 305(C).
    8. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    9. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    10. Saeed Mahmoodpour & Mrityunjay Singh & Ramin Mahyapour & Sri Kalyan Tangirala & Kristian Bär & Ingo Sass, 2022. "Numerical Simulation of Thermo-Hydro-Mechanical Processes at Soultz-sous-Forêts," Energies, MDPI, vol. 15(24), pages 1-21, December.
    11. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    12. Wanli Gao & Jingtao Zhao & Suping Peng, 2022. "UNet–Based Temperature Simulation of Hot Dry Rock in the Gonghe Basin," Energies, MDPI, vol. 15(17), pages 1-17, August.
    13. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).
    14. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    15. Hsieh, Jui-Ching & Li, Bo-Han & Lee, Bo-Heng & Royandi, Muhamad Aditya & Salsabilla, Nadya Sefira, 2024. "Performance and economic analyses of a geothermal reservoir model coupled with a flash–binary cycle model," Renewable Energy, Elsevier, vol. 230(C).
    16. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    17. Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing fractured reservoir of enhanced geothermal systems with fuzzy-genetic inversion model: Impacts of geothermal reservoir environment," Energy, Elsevier, vol. 290(C).
    18. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    19. Chen, Guodong & Jiao, Jiu Jimmy & Jiang, Chuanyin & Luo, Xin, 2024. "Surrogate-assisted level-based learning evolutionary search for geothermal heat extraction optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.