IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics096014812401098x.html
   My bibliography  Save this article

Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model

Author

Listed:
  • Liu, Jun
  • Zhao, Peng
  • Peng, Jiao
  • Xian, Hongyu

Abstract

Geothermal resources have important value for its development and utilization. In this work, a thermal–hydraulic–mechanical (THM) coupled numerical model is developed to simulate the heat extraction process in an enhanced geothermal system (EGS). In particular, the matrix permeability enhancement is related to thermal unloading, and the fracture conductivity is determined by the normal effective stress state. Then, a theoretical solution and a field measurement are selected to validate the accuracy/practicality of the THM coupled model. Afterwards, two simulation cases are designed to discuss the effect of natural fractures on the heat extraction performance. Firstly, the EGS contains only one natural fracture. The heat exchange and the temperature distribution in the natural fracture and rock matrix are greatly affected by the location of the natural fracture. Secondly, the EGS contains multiple natural fractures. The results indicate that more natural fractures improve the performance of heat exchange in middle natural fracture and generate a larger cooling area in the rock matrix. With an increase in the fracture number in the EGS, the influence of the included angle between the hydraulic fracture and natural fracture on the production temperature becomes more significant, and the heat extraction efficiency is greatly improved.

Suggested Citation

  • Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812401098x
    DOI: 10.1016/j.renene.2024.121030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401098X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812401098x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.