IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp33-44.html
   My bibliography  Save this article

Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading

Author

Listed:
  • Zhao, Peng
  • Liu, Jun
  • Elsworth, Derek

Abstract

We explore an enhanced geothermal system (EGS) reservoir with horizontal wells connecting multiple hydraulic fractures. In particular we follow the implications of complex thermal–hydraulic–mechanical on the thermal unloading of rock matrix on the permeability evolution. The accuracy and reliability of the proposed model is validated/verified against an existing analytical solution and the Fenton Hill demonstration project. Then, the effect of the fracture number on the heat extraction process is discussed. Results show that matrix permeability enhancement induced by the thermal unloading should be considered in the coupling model. Compared with the results from the traditional model, the maximum temperature difference at the production well can reach 20 K. More fractures in the EGS are advantageous for expanding the cooling range along the production well and have a great impact on the temperature. Generally, an EGS with more fractures is prone to obtain a higher production temperature. In the EGS, fracture number plays an important role in considering both the heat transportation rate and the cooling range in a geothermal exploration process. Per the consideration of geothermal exploitation in the matrix and fracture, there is only a slight difference in the heat extraction ratio for the four numerical cases.

Suggested Citation

  • Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:33-44
    DOI: 10.1016/j.renene.2022.12.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Liang & Ezekiel, Justin & Li, Dexiang & Pei, Jingjing & Ren, Shaoran, 2014. "Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China," Applied Energy, Elsevier, vol. 122(C), pages 237-246.
    2. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    3. Shi, Yu & Song, Xianzhi & Shen, Zhonghou & Wang, Gaosheng & Li, Xiaojiang & Zheng, Rui & Geng, Lidong & Li, Jiacheng & Zhang, Shikun, 2018. "Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells," Energy, Elsevier, vol. 163(C), pages 38-51.
    4. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    5. Kang, Fangchao & Jia, Tianrang & Li, Yingchun & Deng, Jianhui & Tang, Chun'an & Huang, Xin, 2021. "Experimental study on the physical and mechanical variations of hot granite under different cooling treatments," Renewable Energy, Elsevier, vol. 179(C), pages 1316-1328.
    6. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    7. Sun, Zhi-xue & Zhang, Xu & Xu, Yi & Yao, Jun & Wang, Hao-xuan & Lv, Shuhuan & Sun, Zhi-lei & Huang, Yong & Cai, Ming-yu & Huang, Xiaoxue, 2017. "Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model," Energy, Elsevier, vol. 120(C), pages 20-33.
    8. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    9. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling," Renewable Energy, Elsevier, vol. 112(C), pages 151-165.
    10. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    11. Han, Songcai & Cheng, Yuanfang & Gao, Qi & Yan, Chuanliang & Zhang, Jincheng, 2020. "Numerical study on heat extraction performance of multistage fracturing Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 149(C), pages 1214-1226.
    12. Xu, Chaoshui & Dowd, Peter Alan & Tian, Zhao Feng, 2015. "A simplified coupled hydro-thermal model for enhanced geothermal systems," Applied Energy, Elsevier, vol. 140(C), pages 135-145.
    13. Aliyu, Musa D. & Archer, Rosalind A., 2021. "Numerical simulation of multifracture HDR geothermal reservoirs," Renewable Energy, Elsevier, vol. 164(C), pages 541-555.
    14. Zhang, Wei & Guo, Tian-kui & Qu, Zhan-qing & Wang, Zhiyuan, 2019. "Research of fracture initiation and propagation in HDR fracturing under thermal stress from meso-damage perspective," Energy, Elsevier, vol. 178(C), pages 508-521.
    15. Li, S. & Wang, S. & Tang, H., 2022. "Stimulation mechanism and design of enhanced geothermal systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Zhao, Yangsheng & Feng, Zijun & Feng, Zengchao & Yang, Dong & Liang, Weiguo, 2015. "THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M," Energy, Elsevier, vol. 82(C), pages 193-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaochuan Wu & Wei Wang & Lin Zhang & Jinxi Wang & Yuelei Zhang & Ye Zhang, 2024. "Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China," Energies, MDPI, vol. 17(16), pages 1-15, August.
    2. Enshun Ping & Peng Zhao & Haiyan Zhu & Yuzhong Wang & Zixi Jiao & Qingjie Zhao & Gan Feng, 2024. "Numerical Simulation of the Simultaneous Development of Multiple Fractures in Horizontal Wells Based on the Extended Finite Element Method," Energies, MDPI, vol. 17(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Yi & Liu, Shuai & Chai, Junrui & Liu, Jia & Ranjith, P.G. & Cai, Chengzheng & Gao, Feng & Bai, Xue, 2023. "Effect of water-cooling shock on fracture initiation and morphology of high-temperature granite: Application of hydraulic fracturing to enhanced geothermal systems," Applied Energy, Elsevier, vol. 337(C).
    2. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    3. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    4. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    5. Li, Jiawei & Yuan, Wanju & Zhang, Yin & Cherubini, Claudia & Scheuermann, Alexander & Galindo Torres, Sergio Andres & Li, Ling, 2020. "Numerical investigations of CO2 and N2 miscible flow as the working fluid in enhanced geothermal systems," Energy, Elsevier, vol. 206(C).
    6. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    7. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    8. Chen, Yun & Wang, Huidong & Li, Tuo & Wang, Yang & Ren, Feng & Ma, Guowei, 2020. "Evaluation of geothermal development considering proppant embedment in hydraulic fractures," Renewable Energy, Elsevier, vol. 153(C), pages 985-997.
    9. Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
    10. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    11. He, Renhui & Rong, Guan & Tan, Jie & Phoon, Kok-Kwang & Quan, Junsong, 2022. "Numerical evaluation of heat extraction performance in enhanced geothermal system considering rough-walled fractures," Renewable Energy, Elsevier, vol. 188(C), pages 524-544.
    12. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    13. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    14. Meng, Nan & Gao, Xiang & Wang, Zeyu & Li, Tailu, 2024. "Numerical investigation and optimization on dynamic power generation performance of enhanced geothermal system," Energy, Elsevier, vol. 288(C).
    15. Yu, Guojun & Li, Huyu & Liu, Cong & Cheng, Wan & Xu, Huijin, 2023. "Thermal and hydraulic characteristics of a new proposed flyover-crossing fracture configuration for the enhanced geothermal system," Renewable Energy, Elsevier, vol. 211(C), pages 859-873.
    16. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    17. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    18. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    19. Song, Guofeng & Song, Xianzhi & Li, Gensheng & Shi, Yu & Wang, Gaosheng & Ji, Jiayan & Xu, Fuqiang & Song, Zihao, 2021. "An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system," Renewable Energy, Elsevier, vol. 172(C), pages 1233-1249.
    20. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:33-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.