Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cui, Guodong & Pei, Shufeng & Rui, Zhenhua & Dou, Bin & Ning, Fulong & Wang, Jiaqiang, 2021. "Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2," Energy, Elsevier, vol. 217(C).
- Zeng, Yu-chao & Zhan, Jie-min & Wu, Neng-you & Luo, Ying-ying & Cai, Wen-hao, 2016. "Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field," Energy, Elsevier, vol. 103(C), pages 290-304.
- Luo, Feng & Xu, Rui-Na & Jiang, Pei-Xue, 2014. "Numerical investigation of fluid flow and heat transfer in a doublet enhanced geothermal system with CO2 as the working fluid (CO2–EGS)," Energy, Elsevier, vol. 64(C), pages 307-322.
- Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
- Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
- Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
- Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
- Zeng, Yu-Chao & Su, Zheng & Wu, Neng-You, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field," Energy, Elsevier, vol. 56(C), pages 92-107.
- Zeng, Yu-Chao & Wu, Neng-You & Su, Zheng & Wang, Xiao-Xing & Hu, Jian, 2013. "Numerical simulation of heat production potential from hot dry rock by water circulating through a novel single vertical fracture at Desert Peak geothermal field," Energy, Elsevier, vol. 63(C), pages 268-282.
- Guo, Tiankui & Tang, Songjun & Sun, Jiang & Gong, Facheng & Liu, Xiaoqiang & Qu, Zhanqing & Zhang, Wei, 2020. "A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation," Applied Energy, Elsevier, vol. 258(C).
- Feng, Guanhong & Wang, Yu & Xu, Tianfu & Wang, Fugang & Shi, Yan, 2021. "Multiphase flow modeling and energy extraction performance for supercritical geothermal systems," Renewable Energy, Elsevier, vol. 173(C), pages 442-454.
- Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
- Hu, Zixu & Xu, Tianfu & Feng, Bo & Yuan, Yilong & Li, Fengyu & Feng, Guanhong & Jiang, Zhenjiao, 2020. "Thermal and fluid processes in a closed-loop geothermal system using CO2 as a working fluid," Renewable Energy, Elsevier, vol. 154(C), pages 351-367.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Silje Bordvik & Erling Næss, 2023. "Silica Nanoparticle Formation from Supercritical Geothermal Sources," Energies, MDPI, vol. 16(16), pages 1-18, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Tairu & Liu, Gang & Liao, Shengming, 2019. "Impacts of boundary conditions on reservoir numerical simulation and performance prediction of enhanced geothermal systems," Energy, Elsevier, vol. 181(C), pages 202-213.
- Ding, Junfeng & Wang, Shimin, 2018. "2D modeling of well array operating enhanced geothermal system," Energy, Elsevier, vol. 162(C), pages 918-932.
- Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
- Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
- Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
- Yuchao Zeng & Liansheng Tang & Nengyou Wu & Jing Song & Yifei Cao, 2017. "Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field," Energies, MDPI, vol. 10(12), pages 1-17, December.
- Gudala, Manojkumar & Govindarajan, Suresh Kumar & Yan, Bicheng & Sun, Shuyu, 2022. "Numerical investigations of the PUGA geothermal reservoir with multistage hydraulic fractures and well patterns using fully coupled thermo-hydro-geomechanical modeling," Energy, Elsevier, vol. 253(C).
- Li, Xinxin & Li, Chengyu & Gong, Wenping & Zhang, Yanjie & Wang, Junchao, 2023. "Probabilistic analysis of heat extraction performance in enhanced geothermal system based on a DFN-based modeling scheme," Energy, Elsevier, vol. 263(PC).
- Lei, Zhihong & Zhang, Yanjun & Yu, Ziwang & Hu, Zhongjun & Li, Liangzhen & Zhang, Senqi & Fu, Lei & Zhou, Ling & Xie, Yangyang, 2019. "Exploratory research into the enhanced geothermal system power generation project: The Qiabuqia geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 139(C), pages 52-70.
- Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
- Zhai, Haizhen & Jin, Guangrong & Liu, Lihua & Su, Zheng & Zeng, Yuchao & Liu, Jie & Li, Guangyu & Feng, Chuangji & Wu, Nengyou, 2023. "Parametric study of the geothermal exploitation performance from a HDR reservoir through multilateral horizontal wells: The Qiabuqia geothermal area, Gonghe Basin," Energy, Elsevier, vol. 275(C).
- Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
- Liang, Xu & Xu, Tianfu & Feng, Bo & Jiang, Zhenjiao, 2018. "Optimization of heat extraction strategies in fault-controlled hydro-geothermal reservoirs," Energy, Elsevier, vol. 164(C), pages 853-870.
- Zheng, Jun & Li, Peng & Dou, Bin & Fan, Tao & Tian, Hong & Lai, Xiaotian, 2022. "Impact research of well layout schemes and fracture parameters on heat production performance of enhanced geothermal system considering water cooling effect," Energy, Elsevier, vol. 255(C).
- Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
- Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
- Muhammad Haris & Michael Z. Hou & Wentao Feng & Jiashun Luo & Muhammad Khurram Zahoor & Jianxing Liao, 2020. "Investigative Coupled Thermo-Hydro-Mechanical Modelling Approach for Geothermal Heat Extraction through Multistage Hydraulic Fracturing from Hot Geothermal Sedimentary Systems," Energies, MDPI, vol. 13(13), pages 1-21, July.
- Zhang, Yan-Jun & Li, Zheng-Wei & Guo, Liang-Liang & Gao, Ping & Jin, Xian-Peng & Xu, Tian-Fu, 2014. "Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaw," Energy, Elsevier, vol. 78(C), pages 788-805.
- Meng, Nan & Li, Tailu & Wang, Jianqiang & Jia, Yanan & Liu, Qinghua & Qin, Haosen, 2020. "Synergetic mechanism of fracture properties and system configuration on techno-economic performance of enhanced geothermal system for power generation during life cycle," Renewable Energy, Elsevier, vol. 152(C), pages 910-924.
- Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
More about this item
Keywords
supercritical geothermal; power generation; sustainability; IDDP-2 of Iceland;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8466-:d:971061. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.