IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipbs0360544223012574.html
   My bibliography  Save this article

Performance and sustainability assessment of PEMFC/solar-driven CCP systems with different energy storage devices

Author

Listed:
  • Cai, Shanshan
  • Wang, Wenli
  • Zou, Yuqi
  • Li, Song
  • Tu, Zhengkai

Abstract

The rise in cloud computing has promoted the rapid development of the data center industry. Proton exchange membrane fuel cells have high energy conversion efficiency and the potential to be applied in data center applications. In this study, by considering different energy storage devices and multienergy complementarity, four types of proton exchange membrane fuel cell-driven cooling-power systems were designed for data center applications. The effects of different types of energy storage devices and combination of solar energy on the operation characteristics were systematically analyzed. The results indicate that among the four cooling-power systems, the one with heat storage and solar thermal collector provides the best matching between cooling/power supplies and demands. The systems with a heat storage device consumed more hydrogen (3.6%) than those with a power storage device because of the larger requirement of heat (3.8%) and higher current density in the proton exchange membrane fuel cell. Results of emergy analysis show that the cooling-power system with power storage and solar thermal collector reached a maximum environmental sustainability index of 57.610 and a minimum environmental load ratio of 0.018, which imply strong sustainability potential while releasing the lowest pressure to the environment compared to the other systems.

Suggested Citation

  • Cai, Shanshan & Wang, Wenli & Zou, Yuqi & Li, Song & Tu, Zhengkai, 2023. "Performance and sustainability assessment of PEMFC/solar-driven CCP systems with different energy storage devices," Energy, Elsevier, vol. 278(PB).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012574
    DOI: 10.1016/j.energy.2023.127863
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127863?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Calise, Francesco & Ferruzzi, Gabriele & Vanoli, Laura, 2012. "Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies," Energy, Elsevier, vol. 41(1), pages 18-30.
    2. Khoshgoftar Manesh, M.H. & Mehrabian, M.J. & Nourpour, M. & Onishi, V.C., 2023. "Risk and 4E analyses and optimization of a novel solar-natural gas-driven polygeneration system based on Integration of Gas Turbine–SCO2–ORC-solar PV-PEM electrolyzer," Energy, Elsevier, vol. 263(PD).
    3. Luz, Thiago & Moura, Pedro, 2019. "100% Renewable energy planning with complementarity and flexibility based on a multi-objective assessment," Applied Energy, Elsevier, vol. 255(C).
    4. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    5. Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
    6. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    7. Zhou, Yuan & Wang, Jiangjiang & Liu, Yi & Yan, Rujing & Ma, Yanpeng, 2021. "Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system," Energy, Elsevier, vol. 233(C).
    8. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Ma, Zherui & Dong, Fuxiang & Wang, Jiangjiang & Zhou, Yuan & Feng, Yingsong, 2023. "Optimal design of a novel hybrid renewable energy CCHP system considering long and short-term benefits," Renewable Energy, Elsevier, vol. 206(C), pages 72-85.
    10. Yang, Xiaohui & Liu, Kang & Leng, Zhengyang & Liu, Tao & Zhang, Liufang & Mei, Linghao, 2022. "Multi-dimensions analysis of solar hybrid CCHP systems with redundant design," Energy, Elsevier, vol. 253(C).
    11. Tao, Ye & Tian, Wende & Kong, Lingqi & Sun, Suli & Fan, Chenyang, 2022. "Energy, exergy, economic, environmental (4E) and dynamic analysis based global optimization of chemical looping air separation for oxygen and power co-production," Energy, Elsevier, vol. 261(PB).
    12. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Chen, Yuzhu & Wang, Jiangjiang & Ma, Chaofan & Gao, Yuefen, 2019. "Thermo-ecological cost assessment and optimization for a hybrid combined cooling, heating and power system coupled with compound parabolic concentrated-photovoltaic thermal solar collectors," Energy, Elsevier, vol. 176(C), pages 479-492.
    14. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    2. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    3. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    6. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    7. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Revellin, Rémi, 2021. "Modelling small-scale trigenerative advanced adiabatic compressed air energy storage for building application," Energy, Elsevier, vol. 237(C).
    8. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    9. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    10. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    11. Chang, Huawei & Wan, Zhongmin & Zheng, Yao & Chen, Xi & Shu, Shuiming & Tu, Zhengkai & Chan, Siew Hwa & Chen, Rui & Wang, Xiaodong, 2017. "Energy- and exergy-based working fluid selection and performance analysis of a high-temperature PEMFC-based micro combined cooling heating and power system," Applied Energy, Elsevier, vol. 204(C), pages 446-458.
    12. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    13. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    14. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    15. Zolfaghari, Seyed Mohammad & Soltani, M. & Hosseinpour, Morteza & Nathwani, Jatin, 2023. "Comprehensive analysis of geothermal energy integration with heavy oil upgrading in hot compressed water," Applied Energy, Elsevier, vol. 345(C).
    16. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
    17. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    18. Graça Gomes, João & Medeiros Pinto, José & Xu, Huijin & Zhao, Changying & Hashim, Haslenda, 2020. "Modeling and planning of the electricity energy system with a high share of renewable supply for Portugal," Energy, Elsevier, vol. 211(C).
    19. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    20. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pb:s0360544223012574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.