IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221013827.html
   My bibliography  Save this article

Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system

Author

Listed:
  • Zhou, Yuan
  • Wang, Jiangjiang
  • Liu, Yi
  • Yan, Rujing
  • Ma, Yanpeng

Abstract

The energy management of combined cooling, heating and power (CCHP) system is essential for simultaneously improving its energy and economic performances. However, the conventional operation strategies are mainly logical control, which passively adapts to users’ demands. This paper proposes an optimal economic energy dispatch model of the CCHP system incorporating deep learning of load predictions to fulfill active control strategy in dynamic programming. A cross linear optimization method with a half update strategy of component efficiencies is developed to solve and calculate the variable component efficiencies in the CCHP system. Compared to the genetic algorithm, the proposed method achieves better results and the convergence time is reduced by 93%. The model predictive control of the CCHP system in load predictions of an artificial neural network is combined to the dynamic programming to realize the active energy dispatch strategy. The effects of short-term prediction and long-term prediction on forecast performances and operation costs are discussed. The case study demonstrates that the ideal prediction horizon of 8 h is recommended to fully realize the active functions of energy storage devices in the CCHP system. The proposed active strategy with model predictive control reduces the operational cost by 3.66% compared to the passive control strategy.

Suggested Citation

  • Zhou, Yuan & Wang, Jiangjiang & Liu, Yi & Yan, Rujing & Ma, Yanpeng, 2021. "Incorporating deep learning of load predictions to enhance the optimal active energy management of combined cooling, heating and power system," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013827
    DOI: 10.1016/j.energy.2021.121134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    2. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    3. Nelson, James R. & Johnson, Nathan G., 2020. "Model predictive control of microgrids for real-time ancillary service market participation," Applied Energy, Elsevier, vol. 269(C).
    4. Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Santarelli, Marina, 2019. "Hybrid renewable energy systems: Influence of short term forecasting on model predictive control performance," Energy, Elsevier, vol. 172(C), pages 997-1004.
    5. Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
    6. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    7. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    8. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    9. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    10. Song, Zhihui & Liu, Tao & Lin, Qizhao, 2020. "Multi-objective optimization of a solar hybrid CCHP system based on different operation modes," Energy, Elsevier, vol. 206(C).
    11. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Rullo, P. & Braccia, L. & Luppi, P. & Zumoffen, D. & Feroldi, D., 2019. "Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 140(C), pages 436-451.
    13. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    14. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    15. Tarragona, Joan & Fernández, Cèsar & de Gracia, Alvaro, 2020. "Model predictive control applied to a heating system with PV panels and thermal energy storage," Energy, Elsevier, vol. 197(C).
    16. Wang, Jiangjiang & Lu, Zherui & Li, Meng & Lior, Noam & Li, Weihua, 2019. "Energy, exergy, exergoeconomic and environmental (4E) analysis of a distributed generation solar-assisted CCHP (combined cooling, heating and power) gas turbine system," Energy, Elsevier, vol. 175(C), pages 1246-1258.
    17. Wang, Xuan & Shu, Gequn & Tian, Hua & Wang, Rui & Cai, Jinwen, 2020. "Operation performance comparison of CCHP systems with cascade waste heat recovery systems by simulation and operation optimisation," Energy, Elsevier, vol. 206(C).
    18. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zhikun & Yang, Siyuan & Yu, Junqi & Zhao, Anjun, 2024. "Hybrid forecasting model of building cooling load based on combined neural network," Energy, Elsevier, vol. 297(C).
    2. Zhou, Yuan & Wang, Jiangjiang & Wei, Changqi & Li, Yuxin, 2024. "A novel two-stage multi-objective dispatch model for a distributed hybrid CCHP system considering source-load fluctuations mitigation," Energy, Elsevier, vol. 300(C).
    3. de Araujo Passos, Luigi Antonio & Ceha, Thomas Joseph & Baldi, Simone & De Schutter, Bart, 2023. "Model predictive control of a thermal chimney and dynamic solar shades for an all-glass facades building," Energy, Elsevier, vol. 264(C).
    4. Zhou, Yuan & Wang, Jiangjiang & Yang, Mingxu & Xu, Hangwei, 2023. "Hybrid active and passive strategies for chance-constrained bilevel scheduling of community multi-energy system considering demand-side management and consumer psychology," Applied Energy, Elsevier, vol. 349(C).
    5. Yan, Xiuying & Ji, Xingxing & Meng, Qinglong & Sun, Hang & Lei, Yu, 2024. "A hybrid prediction model of improved bidirectional long short-term memory network for cooling load based on PCANet and attention mechanism," Energy, Elsevier, vol. 292(C).
    6. Huang, Guizao & Wu, Guangning & Yang, Zefeng & Chen, Xing & Wei, Wenfu, 2023. "Development of surrogate models for evaluating energy transfer quality of high-speed railway pantograph-catenary system using physics-based model and machine learning," Applied Energy, Elsevier, vol. 333(C).
    7. Chen, Ke & Pan, Ming, 2021. "Operation optimization of combined cooling, heating, and power superstructure system for satisfying demand fluctuation," Energy, Elsevier, vol. 237(C).
    8. Mario Pérez-Gomariz & Antonio López-Gómez & Fernando Cerdán-Cartagena, 2023. "Artificial Neural Networks as Artificial Intelligence Technique for Energy Saving in Refrigeration Systems—A Review," Clean Technol., MDPI, vol. 5(1), pages 1-21, January.
    9. Cai, Shanshan & Li, Xu & Yang, Ling & Hua, Zhipeng & Li, Song & Tu, Zhengkai, 2024. "Demand flexibility and its impact on a PEM fuel cell-based integrated energy supply system with humidity control," Renewable Energy, Elsevier, vol. 228(C).
    10. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei & Zhou, Zhihua, 2022. "Evaluation of the operation data for improving the prediction accuracy of heating parameters in heating substation," Energy, Elsevier, vol. 238(PB).
    11. Lian, Kuang-Yow & Hong, Yong-Jie & Chang, Che-Wei & Su, Yu-Wei, 2022. "A novel data-driven optimal chiller loading regulator based on backward modeling approach," Applied Energy, Elsevier, vol. 327(C).
    12. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Xue, Xizhen & Lin, Zhongwei & Fang, Fang, 2021. "Real-time optimal operation of integrated electricity and heat system considering reserve provision of large-scale heat pumps," Energy, Elsevier, vol. 237(C).
    13. Cai, Shanshan & Wang, Wenli & Zou, Yuqi & Li, Song & Tu, Zhengkai, 2023. "Performance and sustainability assessment of PEMFC/solar-driven CCP systems with different energy storage devices," Energy, Elsevier, vol. 278(PB).
    14. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    2. Ren, Xin-Yu & Li, Ling-Ling & Ji, Bing-Xiang & Liu, Jia-Qi, 2024. "Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model," Energy, Elsevier, vol. 292(C).
    3. Kang, Ligai & Wu, Xiaojing & Yuan, Xiaoxue & Ma, Kunru & Wang, Yongzhen & Zhao, Jun & An, Qingsong, 2021. "Influence analysis of energy policies on comprehensive performance of CCHP system in different buildings," Energy, Elsevier, vol. 233(C).
    4. Zhou, Shengdong & Bai, Zhang & Li, Qi & Yuan, Yu & Wang, Shuoshuo, 2024. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Optimized recuperation regulation with syngas storage," Applied Energy, Elsevier, vol. 353(PB).
    5. Chen, Yuzhu & Hua, Huilian & Xu, Jinzhao & Yun, Zhonghua & Wang, Jun & Lund, Peter D., 2022. "Techno-economic cost assessment of a combined cooling heating and power system coupled to organic Rankine cycle with life cycle method," Energy, Elsevier, vol. 239(PA).
    6. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    7. Chen, W.D. & Shao, Y.L. & Bui, D.T. & Huang, Z.F. & Chua, K.J., 2024. "Development of novel optimal operating maps for combined cooling, heating, and power systems," Applied Energy, Elsevier, vol. 358(C).
    8. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    9. Chen, Yuzhu & Xu, Jinzhao & Wang, Jun & Lund, Peter D., 2021. "Exergo-environmental cost optimization of a combined cooling, heating and power system using the emergy concept and equivalent emissions as ecological boundary," Energy, Elsevier, vol. 233(C).
    10. Chen, Yuzhu & Guo, Weimin & Zhang, Tianhu & Lund, Peter D. & Wang, Jun & Yang, Kun, 2024. "Carbon and economic prices optimization of a solar-gas coupling energy system with a modified non-dominated sorting genetic algorithm considering operating sequences of water-cooled chillers," Energy, Elsevier, vol. 301(C).
    11. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    12. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    13. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    14. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    15. Jin, Baohong, 2023. "Impact of renewable energy penetration in power systems on the optimization and operation of regional distributed energy systems," Energy, Elsevier, vol. 273(C).
    16. Junchao Cheng & Yongyi Huang & Hongjing He & Abdul Matin Ibrahimi & Tomonobu Senjyu, 2023. "Optimal Operation of CCHP System Combined Electric Vehicles Considering Seasons," Energies, MDPI, vol. 16(10), pages 1-21, May.
    17. Aidong Zeng & Sipeng Hao & Jia Ning & Qingshan Xu & Ling Jiang, 2020. "Research on Real-Time Optimized Operation and Dispatching Strategy for Integrated Energy System Based on Error Correction," Energies, MDPI, vol. 13(11), pages 1-21, June.
    18. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    19. Han, Zepeng & Han, Wei & Sui, Jun, 2024. "Exergo-environmental cost optimization and thermodynamic analysis for a solar-driven combined heating and power system," Energy, Elsevier, vol. 302(C).
    20. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.