IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223013063.html
   My bibliography  Save this article

Stability and rheology of carbon-containing composite liquid fuels under subambient temperatures

Author

Listed:
  • Piskunov, Maxim
  • Romanov, Daniil
  • Strizhak, Pavel

Abstract

Since an average annual temperature for the storage and transportation of composite liquid fuels (CLF) in different countries can vary significantly, covering subambient temperatures and even negative, the challenge of providing their high stability, appropriate to industrial use fluidity classes, and rheology due to the use of functional additives becomes urgent. The study develops the new formulation of CLF tested for phase separation, sedimentation stability, fluidity, and rheology after 72-h holding at temperatures from −5 °C to 25 °C. CLF are based on coking coal and coal sludge particles with the addition of dispersants, diluting agents, viscosity and water loss reducers. Analyzing stability and fluidity, CLF based on 50 wt% of the coal sludge and 48 wt% of water (or 20 wt% glycerol solution when holding at 0 °C and −5 °C) with the addition of 1 wt% acid sodium polyphosphate as a deflocculant and diluent and 1 wt% isononylphenol as a dispersant is determined as the most stable composition. Three factors are established that determine the combined effect of dispersants and regulators of physical-chemical properties on rheology. An analysis of rheology and stability identified additional three promising coal-based compositions containing a coal phosphate reagent, acidic sodium pyrophosphate, isononylphenol, and mono- and dialkylphenols.

Suggested Citation

  • Piskunov, Maxim & Romanov, Daniil & Strizhak, Pavel, 2023. "Stability and rheology of carbon-containing composite liquid fuels under subambient temperatures," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013063
    DOI: 10.1016/j.energy.2023.127912
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013063
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127912?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    2. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
    3. Wamankar, Arun Kumar & Murugan, S., 2015. "Review on production, characterisation and utilisation of solid fuels in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 249-262.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    2. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    3. Vershinina, Kseniya & Shevyrev, Sergei & Strizhak, Pavel, 2021. "Coal and petroleum-derived components for high-moisture fuel slurries," Energy, Elsevier, vol. 219(C).
    4. Feng, Ping & Lin, Weigang & Jensen, Peter Arendt & Song, Wenli & Hao, Lifang & Raffelt, Klaus & Dam-Johansen, Kim, 2016. "Entrained flow gasification of coal/bio-oil slurries," Energy, Elsevier, vol. 111(C), pages 793-802.
    5. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    6. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    7. Mao, Lirui & Zheng, Mingdong & Li, Hanxu, 2023. "Acceleration effect of BDO tar on coal water slurry during co-gasification," Energy, Elsevier, vol. 262(PA).
    8. Hammerton, James M. & Li, Hu & Ross, Andrew B., 2020. "Char-diesel slurry fuels for microgeneration: Emission characteristics and engine performance," Energy, Elsevier, vol. 207(C).
    9. Zhang, Nan & Wang, Guangwei & Yu, Chunmei & Zhang, Jianliang & Dang, Han & Zhang, Cuiliu & Ning, Xiaojun & Wang, Chuan, 2022. "Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization," Energy, Elsevier, vol. 238(PA).
    10. Yi, Shuping & Hao, Lifang & Li, Songgeng & Song, Wenli, 2019. "The influence of water content in rice husk bio-oil on the rheological properties of coal bio-oil slurries," Energy, Elsevier, vol. 189(C).
    11. Wang, Chu & Ding, Haozhi & Zhang, Yiming & Zhu, Xifeng, 2020. "Analysis of property variation and stability on the aging of bio-oil from fractional condensation," Renewable Energy, Elsevier, vol. 148(C), pages 720-728.
    12. Dmitrii Antonov & Olga Gaidukova & Galina Nyashina & Dmitrii Razumov & Pavel Strizhak, 2022. "Prospects of Using Gas Hydrates in Power Plants," Energies, MDPI, vol. 15(12), pages 1-20, June.
    13. Lei, Yang & Chen, Yuming & Chen, Jinghai & Liu, Xinyan & Wu, Xiaoqin & Chen, Yuqiu, 2023. "A novel modeling strategy for the prediction on the concentration of H2 and CH4 in raw coke oven gas," Energy, Elsevier, vol. 273(C).
    14. Bolegenova, Saltanat & Askarova, Аliya & Georgiev, Aleksandar & Nugymanova, Aizhan & Maximov, Valeriy & Bolegenova, Symbat & Mamedov, Bolat, 2023. "The use of plasma technologies to optimize fuel combustion processes and reduce emissions of harmful substances," Energy, Elsevier, vol. 277(C).
    15. Strizhak, Pavel A. & Vershinina, Ksenia Yu., 2017. "Maximum combustion temperature for coal-water slurry containing petrochemicals," Energy, Elsevier, vol. 120(C), pages 34-46.
    16. Gvozdyakov, Dmitry & Zenkov, Andrey, 2021. "Improvement of atomization characteristics of coal-water slurries," Energy, Elsevier, vol. 230(C).
    17. John M. Long & Michael D. Boyette, 2016. "Analysis of Micronized Charcoal for Use in a Liquid Fuel Slurry," Energies, MDPI, vol. 10(1), pages 1-11, December.
    18. Maxim Belonogov & Vadim Dorokhov & Dmitrii Glushkov & Daria Kuznechenkova & Daniil Romanov, 2023. "Combustion Characteristics of Coal-Water Slurry Droplets in High-Temperature Air with the Addition of Syngas," Energies, MDPI, vol. 16(8), pages 1-17, April.
    19. Geniy Kuznetsov & Dmitrii Antonov & Maxim Piskunov & Leonid Yanovskyi & Olga Vysokomornaya, 2022. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications," Energies, MDPI, vol. 15(24), pages 1-21, December.
    20. Wang, Ruikun & Zhao, Zhenghui & Liu, Jianzhong & Lv, Yukun & Ye, Xuemin, 2016. "Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation," Energy, Elsevier, vol. 113(C), pages 319-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223013063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.