IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034881.html
   My bibliography  Save this article

The high-concentration and pumpable pig manure slurry: Preparation, optimization, and evaluation for continuous supercritical water gasification

Author

Listed:
  • Du, Mingming
  • Sun, Jingli
  • Jin, Hui
  • Chen, Yu-nan
  • Chen, Bin
  • Guo, Liejin

Abstract

The preparation of pumpable slurry with high solid content has emerged as one of the obstacles in the continuous supercritical water gasification of pig manure. This study aims to address this challenge by employing K2CO3 and thermal treatments. Initially, evaluating the effect of parameters on the pumpability, stability, and viscosity of the slurry and optimizing the pulping conditions were carried out. The findings indicate that a 40 wt% slurry can be obtained at a K2CO3 ratio of 0.10, a pulping temperature of 160 °C, a reaction time of 30 min, and a premixing temperature of 80 °C. For a 50 wt% slurry, the corresponding conditions increased to 0.20, 180 °C, and 90 min, separately. Then, an insight into pulping mechanism reveals that the viscosity and stability of slurry are determined by the particle size and surface functional groups. The functional groups such as -C=O and -OH on the particle surface are matched with the organic components in the slurry, which is beneficial for reducing the viscosity of the slurry and improving its stability. Finally, a 40 wt% concentration slurry is successfully pumped. At a temperature of 620 °C and a preheating water ratio of 4, gasification efficiency reaches 74.43 %.

Suggested Citation

  • Du, Mingming & Sun, Jingli & Jin, Hui & Chen, Yu-nan & Chen, Bin & Guo, Liejin, 2024. "The high-concentration and pumpable pig manure slurry: Preparation, optimization, and evaluation for continuous supercritical water gasification," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034881
    DOI: 10.1016/j.energy.2024.133710
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khoshnevisan, Benyamin & Duan, Na & Tsapekos, Panagiotis & Awasthi, Mukesh Kumar & Liu, Zhidan & Mohammadi, Ali & Angelidaki, Irini & Tsang, Daniel CW. & Zhang, Zengqiang & Pan, Junting & Ma, Lin & Ag, 2021. "A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Feng, Ping & Hao, Lifang & Huo, Chaofei & Wang, Ze & Lin, Weigang & Song, Wenli, 2014. "Rheological behavior of coal bio-oil slurries," Energy, Elsevier, vol. 66(C), pages 744-749.
    3. Soloiu, Valentin & Lewis, Jeffery & Yoshihara, Yoshinobu & Nishiwaki, Kazuie, 2011. "Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance," Energy, Elsevier, vol. 36(7), pages 4353-4371.
    4. Wang, Yu & Ren, Changyifan & Guo, Shenghui & Liu, Shi & Du, Mingming & Chen, Yunan & Guo, Liejin, 2023. "Thermodynamic and environmental analysis of heat supply in pig manure supercritical water gasification system," Energy, Elsevier, vol. 263(PA).
    5. Yi, Shuping & Hao, Lifang & Li, Songgeng & Song, Wenli, 2019. "The influence of water content in rice husk bio-oil on the rheological properties of coal bio-oil slurries," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Xinhui & Yan, Lei & Wang, Haipeng & Bi, Shaojie & Zhang, Futao & Huang, Sisi & Wang, Yanhong & Wang, Yanjie, 2024. "Anaerobic co-digestion of cabbage waste and cattle manure: Effect of mixing ratio and hydraulic retention time," Renewable Energy, Elsevier, vol. 221(C).
    2. Rahul Kadam & Sangyeol Jo & Jonghwa Lee & Kamonwan Khanthong & Heewon Jang & Jungyu Park, 2024. "A Review on the Anaerobic Co-Digestion of Livestock Manures in the Context of Sustainable Waste Management," Energies, MDPI, vol. 17(3), pages 1-27, January.
    3. Yue Jiang & Yue Zhang & Hong Li, 2023. "Research Progress and Analysis on Comprehensive Utilization of Livestock and Poultry Biogas Slurry as Agricultural Resources," Agriculture, MDPI, vol. 13(12), pages 1-17, November.
    4. Yuan Luo & Xiangzhuo Meng & Yuan Liu & Kokyo Oh & Hongyan Cheng, 2023. "Using Time-to-Event Model in Seed Germination Test to Evaluate Maturity during Cow Dung Composting," Sustainability, MDPI, vol. 15(5), pages 1-9, February.
    5. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Ester Scotto di Perta & Raffaele Grieco & Stefano Papirio & Giovanni Esposito & Elena Cervelli & Marco Bovo & Stefania Pindozzi, 2023. "Ammonia Air Stripping from Different Livestock Effluents Prior to and after Anaerobic Digestion," Sustainability, MDPI, vol. 15(12), pages 1-10, June.
    7. Costantini, Michele & Provolo, Giorgio & Bacenetti, Jacopo, 2024. "The effects of incorporating renewable energy into the environmental footprint of beef production," Energy, Elsevier, vol. 289(C).
    8. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    9. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    10. Vershinina, Kseniya & Shevyrev, Sergei & Strizhak, Pavel, 2021. "Coal and petroleum-derived components for high-moisture fuel slurries," Energy, Elsevier, vol. 219(C).
    11. Sun, Jianlong & Bai, Bin & Yu, Xinyue & Wang, Yujie & Zhou, Weihong & Jin, Hui, 2024. "Thermodynamic analysis of a solar-assisted supercritical water gasification system for poly-generation of hydrogen-heat-power production from waste plastics," Energy, Elsevier, vol. 307(C).
    12. Ooi, Jong Boon & Ismail, Harun Mohamed & Tan, Boon Thong & Wang, Xin, 2018. "Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine," Energy, Elsevier, vol. 161(C), pages 70-80.
    13. Feng, Ping & Lin, Weigang & Jensen, Peter Arendt & Song, Wenli & Hao, Lifang & Raffelt, Klaus & Dam-Johansen, Kim, 2016. "Entrained flow gasification of coal/bio-oil slurries," Energy, Elsevier, vol. 111(C), pages 793-802.
    14. Piskunov, Maxim & Romanov, Daniil & Strizhak, Pavel, 2023. "Stability and rheology of carbon-containing composite liquid fuels under subambient temperatures," Energy, Elsevier, vol. 278(PA).
    15. Gu, Suqian & Xu, Zhiqiang & Ren, Yangguang & Tu, Yanan & Sun, Meijie & Liu, Xiangyang, 2021. "An approach for upgrading lignite to improve slurryability: Blending with direct coal liquefaction residue under microwave-assisted pyrolysis," Energy, Elsevier, vol. 222(C).
    16. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    17. Anastasia Islamova & Pavel Tkachenko & Kristina Pavlova & Pavel Strizhak, 2022. "Interaction between Droplets and Particles as Oil–Water Slurry Components," Energies, MDPI, vol. 15(21), pages 1-23, November.
    18. Fan, Xing & Peng, Jinshan & Han, Yuqing & Chang, Jie & Ge, Ying & Song, Dan, 2025. "Water-energy-food nexus in the sustainable management of crop-livestock coupled systems," Applied Energy, Elsevier, vol. 378(PA).
    19. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    20. Petru Alexandru Vlaicu & Arabela Elena Untea & Alexandra Gabriela Oancea, 2024. "Sustainable Poultry Feeding Strategies for Achieving Zero Hunger and Enhancing Food Quality," Agriculture, MDPI, vol. 14(10), pages 1-57, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.