IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v9y2022ics2214716022000112.html
   My bibliography  Save this article

Multi-stage stochastic optimization of islanded utility-microgrids design after natural disasters

Author

Listed:
  • Kizito, Rodney
  • Liu, Zeyu
  • Li, Xueping
  • Sun, Kai

Abstract

Natural disasters (e.g., hurricanes) can cause widespread power outages within distribution networks and interrupted power supply to critical loads (e.g., grocery stores, hospitals, gas, fire, and police stations) that provide utility services. Microgrids are localized power grids that can incorporate solar/photovoltaic (PV) distributed generators (PV-DGs) and energy storage systems (ESSs) for stand-alone system operations independent of the main grid, known as the island mode. This study investigates a microgrid design problem using PV-DGs and ESSs when facing prolonged power outages in the main grid. We propose a multi-stage stochastic program that holistically considers the techno-economics of microgrid investment and daily operations by optimizing the reliability and resilience of the microgrid during a week-long power outage. The model is designed from a utility perspective that includes budget constraints for investment. Due to the large model size, we develop a nested L-shaped algorithm that solves the problem exactly and analyzes the microgrid’s reliability across different weather scenarios in the entire decision-making horizon. Results from a case study using real-world data show that an islanded utility-scale microgrid can effectively provide uninterrupted power supply to a network of 5 and 10 critical loads, covering 100% and 97% of the demand in all possible future scenarios, with potential investments of $8 million and $15 million, respectively.

Suggested Citation

  • Kizito, Rodney & Liu, Zeyu & Li, Xueping & Sun, Kai, 2022. "Multi-stage stochastic optimization of islanded utility-microgrids design after natural disasters," Operations Research Perspectives, Elsevier, vol. 9(C).
  • Handle: RePEc:eee:oprepe:v:9:y:2022:i:c:s2214716022000112
    DOI: 10.1016/j.orp.2022.100235
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716022000112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2022.100235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maël Riou & Florian Dupriez-Robin & Dominique Grondin & Christophe Le Loup & Michel Benne & Quoc T. Tran, 2021. "Multi-Objective Optimization of Autonomous Microgrids with Reliability Consideration," Energies, MDPI, vol. 14(15), pages 1-20, July.
    2. Sk. A. Shezan & Kazi Nazmul Hasan & Akhlaqur Rahman & Manoj Datta & Ujjwal Datta, 2021. "Selection of Appropriate Dispatch Strategies for Effective Planning and Operation of a Microgrid," Energies, MDPI, vol. 14(21), pages 1-19, November.
    3. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    4. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    5. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    6. Shield, Stephen A. & Quiring, Steven M. & Pino, Jordan V. & Buckstaff, Ken, 2021. "Major impacts of weather events on the electrical power delivery system in the United States," Energy, Elsevier, vol. 218(C).
    7. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    8. Lenhart, Stephanie & Araújo, Kathleen, 2021. "Microgrid decision-making by public power utilities in the United States: A critical assessment of adoption and technological profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Wuyang, 2023. "A robust model for emergency supplies prepositioning and transportation considering road disruptions," Operations Research Perspectives, Elsevier, vol. 10(C).
    2. Zhang, Houwang & Wu, Qiuwei & Chen, Jian & Lu, Lina & Zhang, Jiangfeng & Zhang, Shuyi, 2023. "Multiple stage stochastic planning of integrated electricity and gas system based on distributed approximate dynamic programming," Energy, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalez-Reina, Antonio Enrique & Garcia-Torres, Felix & Girona-Garcia, Victor & Sanchez-Sanchez-de-Puerta, Alvaro & Jimenez-Romero, F.J. & Jimenez-Hornero, Jorge E., 2024. "Cooperative model predictive control for avoiding critical instants of energy resilience in networked microgrids," Applied Energy, Elsevier, vol. 369(C).
    2. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Gorman, Will & Barbose, Galen & Miller, Cesca & White, Philip & Carvallo, Juan Pablo & Baik, Sunhee, 2024. "Evaluating the potential for solar-plus-storage backup power in the United States as homes integrate efficient, flexible, and electrified energy technologies," Energy, Elsevier, vol. 304(C).
    4. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    5. Yang, Peiwen & Fang, Debin & Wang, Shuyi, 2022. "Optimal trading mechanism for prosumer-centric local energy markets considering deviation assessment," Applied Energy, Elsevier, vol. 325(C).
    6. Mageswaran Rengasamy & Sivasankar Gangatharan & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "Incorporation of Microgrid Technology Solutions to Reduce Power Loss in a Distribution Network with Elimination of Inefficient Power Conversion Strategies," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    7. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    8. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2023. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids," Energies, MDPI, vol. 16(7), pages 1-35, March.
    9. Dong, Yuchen & Zheng, Weibo & Cao, Xiaoyu & Sun, Xunhang & He, Zhengwen, 2023. "Co-planning of hydrogen-based microgrids and fuel-cell bus operation centers under low-carbon and resilience considerations," Applied Energy, Elsevier, vol. 336(C).
    10. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    11. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    12. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    13. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    14. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    15. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    16. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    17. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    18. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    19. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.
    20. Huizhu Wang & Jianqin Zhou, 2023. "Location of Railway Emergency Rescue Spots Based on a Near-Full Covering Problem: From a Perspective of Diverse Scenarios," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:9:y:2022:i:c:s2214716022000112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.