IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223005625.html
   My bibliography  Save this article

A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions

Author

Listed:
  • Ouyang, Nan
  • Zhang, Wencan
  • Yin, Xiuxing
  • Li, Xingyao
  • Xie, Yi
  • He, Hancheng
  • Long, Zhuoru

Abstract

Thermal Runaway Propagation (TRP) of lithium-ion battery packs has serious hazards. However, the TRP prediction is challenging because of the substantial uncertainty and hard-to-acquire data. To solve this problem, a fuzzy system and multi-task CNN-LSTM method are proposed to predict TRP multiple steps ahead. The TRP dataset is constructed by 25 sets of experiments and 130 sets of simulations. The uncertain SoC, charging and discharging conditions, and thermal runaway (TR) trigger points are considered in both experiments and simulations. Then, the fuzzy system is introduced to reason about the TR probability of the battery and optimized by a sparrow search algorithm (SSA). A multi-task CNN-LSTM model is proposed to extract fuzzy and physical information by employing a convolutional neural network (CNN) and multiple long short-term memory (LSTM) neural networks, respectively, and output the temperature of multiple cells simultaneously. Finally, the models are evaluated in the simulation and experimental validation sets with different window lengths and time resolutions. The results show that the fuzzy information significantly improves the prediction accuracy of the method, with a coefficient of determination (R2) of 98.48% for the 3s prediction horizon and 97.27% for the 18s prediction horizon in the experimental validation set.

Suggested Citation

  • Ouyang, Nan & Zhang, Wencan & Yin, Xiuxing & Li, Xingyao & Xie, Yi & He, Hancheng & Long, Zhuoru, 2023. "A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005625
    DOI: 10.1016/j.energy.2023.127168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    2. Feng, Xuning & He, Xiangming & Ouyang, Minggao & Lu, Languang & Wu, Peng & Kulp, Christian & Prasser, Stefan, 2015. "Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery," Applied Energy, Elsevier, vol. 154(C), pages 74-91.
    3. Jiang, Z.Y. & Qu, Z.G. & Zhang, J.F. & Rao, Z.H., 2020. "Rapid prediction method for thermal runaway propagation in battery pack based on lumped thermal resistance network and electric circuit analogy," Applied Energy, Elsevier, vol. 268(C).
    4. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    5. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wencan & He, Hancheng & Li, Taotao & Yuan, Jiangfeng & Xie, Yi & Long, Zhuoru, 2024. "Lithium-ion battery state of health prognostication employing multi-model fusion approach based on image coding of charging voltage and temperature data," Energy, Elsevier, vol. 296(C).
    2. Wang, Gongquan & Ping, Ping & Peng, Rongqi & Lv, Hongpeng & Zhao, Hengle & Gao, Wei & Kong, Depeng, 2023. "A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    3. Li, Kuijie & Gao, Xinlei & Peng, Shijian & Wang, Shengshi & Zhang, Weixin & Liu, Peng & Wu, Weixiong & Wang, Huizhi & Wang, Yu & Feng, Xuning & Cao, Yuan-cheng & Wen, Jinyu & Cheng, Shijie & Ouyang, M, 2024. "A comparative study on multidimensional signal evolution during thermal runaway of lithium-ion batteries with various cathode materials," Energy, Elsevier, vol. 300(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gongquan & Ping, Ping & Peng, Rongqi & Lv, Hongpeng & Zhao, Hengle & Gao, Wei & Kong, Depeng, 2023. "A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    2. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    3. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    4. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    5. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
    6. Zhou, Zhizuan & Zhou, Xiaodong & Ju, Xiaoyu & Li, Maoyu & Cao, Bei & Yang, Lizhong, 2023. "Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules," Renewable Energy, Elsevier, vol. 207(C), pages 13-26.
    7. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    8. Huang, Zonghou & Shen, Ting & Jin, Kaiqiang & Sun, Jinhua & Wang, Qingsong, 2022. "Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode," Energy, Elsevier, vol. 239(PA).
    9. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    10. Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jiangqiu & He, Xiangming, 2016. "A 3D thermal runaway propagation model for a large format lithium ion battery module," Energy, Elsevier, vol. 115(P1), pages 194-208.
    11. Liu, Fen & Wang, Jianfeng & Yang, Na & Wang, Fuqiang & Chen, Yaping & Lu, Dongchen & Liu, Hui & Du, Qian & Ren, Xutong & Shi, Mengyu, 2022. "Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers," Energy, Elsevier, vol. 257(C).
    12. Huang, Zonghou & Liu, Jialong & Zhai, Hongju & Wang, Qingsong, 2021. "Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions," Energy, Elsevier, vol. 233(C).
    13. Xu, Chengshan & Wang, Huaibin & Jiang, Fachao & Feng, Xuning & Lu, Languang & Jin, Changyong & Zhang, Fangshu & Huang, Wensheng & Zhang, Mengqi & Ouyang, Minggao, 2023. "Modelling of thermal runaway propagation in lithium-ion battery pack using reduced-order model," Energy, Elsevier, vol. 268(C).
    14. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    15. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    17. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    18. Qiao Zhu & Neng Xiong & Ming-Liang Yang & Rui-Sen Huang & Guang-Di Hu, 2017. "State of Charge Estimation for Lithium-Ion Battery Based on Nonlinear Observer: An H ∞ Method," Energies, MDPI, vol. 10(5), pages 1-19, May.
    19. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    20. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.