IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v268y2023ics0360544223000257.html
   My bibliography  Save this article

Design and analysis of a 1.5 kW single-stage partial-admission impulse turbine for low-grade energy utilization

Author

Listed:
  • Peng, Ningjian
  • Wang, Enhua
  • Wang, Wenli

Abstract

Turbines are widely used as the expanders in low-grade power systems. Increasing the expansion pressure ratio can improve the system efficiency whereas supersonic flow may occur inside the expander, increasing the turbine design difficulty. For small-scale power system, impulse turbine is a suitable option when the mass flow is small and the expansion pressure ratio is high. In this study, a 1.5 kW single-stage partial-admission impulse turbine is designed for waste heat recovery of internal combustion engines. The aerodynamic characteristics of the designed supersonic impulse turbine are analyzed. First, a preliminary design of the nozzle and the impeller is conducted based on the mean-line model and the main geometry parameters are obtained. Then, the blade profile is designed using the characteristic line method. A 3D CFD simulation is performed based on the designed impulse turbine and the flow field is analyzed under the design and off-design conditions. The results indicate that the mean velocity and the Mach number at the nozzle outlet arrive at 1082.87 m/s and 2.645, respectively. A high load is generated on the blades in the partial-admission region due to the pressure difference between the pressure and suction surfaces. The two blades in the middle output the largest torques, taking up nearly 48% of the overall torque. The output power of the turbine achieves 1.385 kW with a total-to-static efficiency of 42.52%. However, some special flow phenomena are found in the edges of the partial admission region such as the inverse flow and the endwall cross flow at the blade hub, the transverse forward flow at the blade tip. The shock wave at the leading edge of the flow channel and the expansion acceleration of the working fluid at the trailing edge are also observed. The results provide a reference for small-scale impulse turbine design with a small mass flow and a high pressure ratio.

Suggested Citation

  • Peng, Ningjian & Wang, Enhua & Wang, Wenli, 2023. "Design and analysis of a 1.5 kW single-stage partial-admission impulse turbine for low-grade energy utilization," Energy, Elsevier, vol. 268(C).
  • Handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000257
    DOI: 10.1016/j.energy.2023.126631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223000257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nithesh, K.G. & Chatterjee, Dhiman, 2016. "Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system," Applied Energy, Elsevier, vol. 167(C), pages 1-16.
    2. Nithesh, K.G. & Chatterjee, Dhiman & Oh, Cheol & Lee, Young-Ho, 2016. "Design and performance analysis of radial-inflow turboexpander for OTEC application," Renewable Energy, Elsevier, vol. 85(C), pages 834-843.
    3. Angelo La Seta & Andrea Meroni & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part B: Application on a Case Study," Energies, MDPI, vol. 9(6), pages 1-17, May.
    4. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Dhanasegaran, Radheesh, 2020. "Experimental study of small scale and high expansion ratio ORC for recovering high temperature waste heat," Energy, Elsevier, vol. 208(C).
    5. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    6. Qin, Kan & Wang, Hanwei & Qi, Jianhui & Sun, Junliang & Luo, Kai, 2022. "Aerodynamic design and experimental validation of high pressure ratio partial admission axial impulse turbines for unmanned underwater vehicles," Energy, Elsevier, vol. 239(PD).
    7. Kiyarash Rahbar & Saad Mahmoud & Raya K. Al-Dadah, 2016. "Mean-line modeling and CFD analysis of a miniature radial turbine for distributed power generation systems," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(2), pages 157-168.
    8. Andrea Meroni & Angelo La Seta & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model," Energies, MDPI, vol. 9(5), pages 1-15, April.
    9. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    10. Ningjian Peng & Enhua Wang & Hongguang Zhang, 2021. "Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle," Energies, MDPI, vol. 14(17), pages 1-20, August.
    11. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    12. Sauret, Emilie & Rowlands, Andrew S., 2011. "Candidate radial-inflow turbines and high-density working fluids for geothermal power systems," Energy, Elsevier, vol. 36(7), pages 4460-4467.
    13. Deligant, Michael & Sauret, Emilie & Danel, Quentin & Bakir, Farid, 2020. "Performance assessment of a standard radial turbine as turbo expander for an adapted solar concentration ORC," Renewable Energy, Elsevier, vol. 147(P3), pages 2833-2841.
    14. Klonowicz, Piotr & Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2014. "Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles," Energy, Elsevier, vol. 72(C), pages 322-330.
    15. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang, 2019. "Performance analysis of low speed axial impulse turbine using two type nozzles for small-scale organic Rankine cycle," Energy, Elsevier, vol. 169(C), pages 1139-1152.
    16. Weiß, Andreas P. & Novotný, Václav & Popp, Tobias & Streit, Philipp & Špale, Jan & Zinn, Gerd & Kolovratník, Michal, 2020. "Customized ORC micro turbo-expanders - From 1D design to modular construction kit and prospects of additive manufacturing," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Shuaichen & Luo, Kai & Liu, Hui & Wang, Xianyi & Liu, Zhao & Qin, Kan, 2024. "Investigation of startup process for underwater turbine power systems using computational fluid dynamics method," Energy, Elsevier, vol. 305(C).
    2. Wang, Chongyao & Wang, Xin & Wang, Huaiyu & Xu, Yonghong & Ge, Yunshan & Tan, Jianwei & Hao, Lijun & Wang, Yachao & Zhang, Mengzhu & Li, Ruonan, 2024. "Co-optimizing NOx emission and power output of a natural gas engine-ORC combined system through neural networks and genetic algorithms," Energy, Elsevier, vol. 289(C).
    3. Zengin, İbrahim & Erdoğan, Beytullah & Benim, Ali Cemal, 2024. "CFD and Taguchi based optimization of air driven single stage partial admission axial turbine blade profiles," Energy, Elsevier, vol. 290(C).
    4. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.
    2. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    3. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    4. Ningjian Peng & Enhua Wang & Hongguang Zhang, 2021. "Preliminary Design of an Axial-Flow Turbine for Small-Scale Supercritical Organic Rankine Cycle," Energies, MDPI, vol. 14(17), pages 1-20, August.
    5. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    6. Kaczmarczyk, Tomasz Z. & Żywica, Grzegorz & Ihnatowicz, Eugeniusz, 2017. "The impact of changes in the geometry of a radial microturbine stage on the efficiency of the micro CHP plant based on ORC," Energy, Elsevier, vol. 137(C), pages 530-543.
    7. Palagi, Laura & Sciubba, Enrico & Tocci, Lorenzo, 2019. "A neural network approach to the combined multi-objective optimization of the thermodynamic cycle and the radial inflow turbine for Organic Rankine cycle applications," Applied Energy, Elsevier, vol. 237(C), pages 210-226.
    8. Witanowski, Łukasz & Klonowicz, Piotr & Lampart, Piotr & Klimaszewski, Piotr & Suchocki, Tomasz & Jędrzejewski, Łukasz & Zaniewski, Dawid & Ziółkowski, Paweł, 2023. "Impact of rotor geometry optimization on the off-design ORC turbine performance," Energy, Elsevier, vol. 265(C).
    9. Gábor Györke & Axel Groniewsky & Attila R. Imre, 2019. "A Simple Method of Finding New Dry and Isentropic Working Fluids for Organic Rankine Cycle," Energies, MDPI, vol. 12(3), pages 1-11, February.
    10. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    11. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    12. Luca Riboldi & Lars O. Nord, 2017. "Lifetime Assessment of Combined Cycles for Cogeneration of Power and Heat in Offshore Oil and Gas Installations," Energies, MDPI, vol. 10(6), pages 1-23, May.
    13. Persico, Giacomo & Romei, Alessandro & Dossena, Vincenzo & Gaetani, Paolo, 2018. "Impact of shape-optimization on the unsteady aerodynamics and performance of a centrifugal turbine for ORC applications," Energy, Elsevier, vol. 165(PA), pages 2-11.
    14. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    15. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    16. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    17. Liaw, Kim Leong & Ong, Khai Chuin & Mohd Ali Zar, Muhammad Aliff B. & Lai, Wen Kang & Muhammad, M. Fadhli B. & Firmansyah, & Kurnia, Jundika C., 2023. "Experimental and numerical investigation of an innovative non-combustion impulse gas turbine for micro-scale electricity generation," Energy, Elsevier, vol. 266(C).
    18. Gaylord Carrillo Caballero & Yulineth Cardenas Escorcia & Osvaldo José Venturini & Electo Eduardo Silva Lora & Anibal Alviz Meza & Luis Sebastián Mendoza Castellanos, 2023. "Unidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions," Energies, MDPI, vol. 16(8), pages 1-31, April.
    19. Andrea Meroni & Angelo La Seta & Jesper Graa Andreasen & Leonardo Pierobon & Giacomo Persico & Fredrik Haglind, 2016. "Combined Turbine and Cycle Optimization for Organic Rankine Cycle Power Systems—Part A: Turbine Model," Energies, MDPI, vol. 9(5), pages 1-15, April.
    20. Toffolo, Andrea & Lazzaretto, Andrea & Manente, Giovanni & Paci, Marco, 2014. "A multi-criteria approach for the optimal selection of working fluid and design parameters in Organic Rankine Cycle systems," Applied Energy, Elsevier, vol. 121(C), pages 219-232.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:268:y:2023:i:c:s0360544223000257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.