IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i3p1318-d1333087.html
   My bibliography  Save this article

Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation

Author

Listed:
  • Kun Liu

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

  • Xuemin Liu

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Zihao Wu

    (School of Economics and Resource Management, Beijing Normal University, Beijing 100875, China)

Abstract

Corporate digital transformation, as a key and representational component of the larger digital economy, plays a vital role in furthering both green technological innovation and the transition to a more sustainable economic model. This study collects panel data relating to firms listed on China’s A-share exchanges from 2009 to 2020 and employs textual analysis to estimate the extent of digital transformation within these organizations. It methodically examines the influence of this transformation on the volume and quality of green technological innovations. The findings reveal a substantial enhancement in both the volume and quality of green technological innovations as a result of corporate digital transformation, with a more noticeable improvement in innovation quality. This transition, driven by the mediating function of optimizing resource allocation, facilitates green technological innovation by enhancing human capital composition, curtailing information asymmetry, and augmenting investment in research and development (R&D). Heterogeneity research shows that the influence of digital transformation on green technological innovation is more pronounced in state-owned corporations, low-pollution corporations, and corporations situated in low-carbon pilot cities. Furthermore, this study discovers that the promotive influence of corporate digital transformation tends to diminish with the advancement of the corporation’s lifecycle, peaking during the growth phase. Finally, this study still has some limitations, such as its exclusive focus on Chinese corporations, the need for improvements in the measurement of digital transformation, and potential sample selection biases.

Suggested Citation

  • Kun Liu & Xuemin Liu & Zihao Wu, 2024. "Nexus between Corporate Digital Transformation and Green Technological Innovation Performance: The Mediating Role of Optimizing Resource Allocation," Sustainability, MDPI, vol. 16(3), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1318-:d:1333087
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/3/1318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/3/1318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yin, Zhichao & Gong, Xue & Guo, Peiyao & Wu, Tao, 2019. "What Drives Entrepreneurship in Digital Economy? Evidence from China," Economic Modelling, Elsevier, vol. 82(C), pages 66-73.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Tao Kong & RenJi Sun & Guanglin Sun & Youtao Song, 2022. "Effects of Digital Finance on Green Innovation considering Information Asymmetry: An Empirical Study Based on Chinese Listed Firms," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 58(15), pages 4399-4411, December.
    4. Luo, Kang & Liu, Yaobin & Chen, Pei-Fen & Zeng, Mingli, 2022. "Assessing the impact of digital economy on green development efficiency in the Yangtze River Economic Belt," Energy Economics, Elsevier, vol. 112(C).
    5. Ghasemaghaei, Maryam & Calic, Goran, 2020. "Assessing the impact of big data on firm innovation performance: Big data is not always better data," Journal of Business Research, Elsevier, vol. 108(C), pages 147-162.
    6. Wu, Keping & Fu, Yumei & Kong, Dongmin, 2022. "Does the digital transformation of enterprises affect stock price crash risk?," Finance Research Letters, Elsevier, vol. 48(C).
    7. Haider Mahmood & Maham Furqan & Muhammad Shahid Hassan & Soumen Rej, 2023. "The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review," Sustainability, MDPI, vol. 15(7), pages 1-32, April.
    8. Li, Guangqin & Xue, Qing & Qin, Jiahong, 2022. "Environmental information disclosure and green technology innovation: Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    9. Verhoef, Peter C. & Broekhuizen, Thijs & Bart, Yakov & Bhattacharya, Abhi & Qi Dong, John & Fabian, Nicolai & Haenlein, Michael, 2021. "Digital transformation: A multidisciplinary reflection and research agenda," Journal of Business Research, Elsevier, vol. 122(C), pages 889-901.
    10. Fang, Zhen, 2023. "Assessing the impact of renewable energy investment, green technology innovation, and industrialization on sustainable development: A case study of China," Renewable Energy, Elsevier, vol. 205(C), pages 772-782.
    11. Ge Zhang & Yuxiang Gao & Gaoyong Li, 2023. "Research on Digital Transformation and Green Technology Innovation—Evidence from China’s Listed Manufacturing Enterprises," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Schot, Johan & Steinmueller, W. Edward, 2018. "Three frames for innovation policy: R&D, systems of innovation and transformative change," Research Policy, Elsevier, vol. 47(9), pages 1554-1567.
    13. Guoen Xia & Zenghui Yu & Xuwu Peng, 2023. "How Does Enterprise Digital Transformation Affect Total Factor Productivity? Based on the Information Intermediary Role of Analysts’ Attention," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    14. Miao, Cheng-lin & Duan, Meng-meng & Zuo, Yang & Wu, Xin-yu, 2021. "Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China's provinces," Energy Policy, Elsevier, vol. 156(C).
    15. Ru-Jin Huang & Yanlin Zhang & Carlo Bozzetti & Kin-Fai Ho & Jun-Ji Cao & Yongming Han & Kaspar R. Daellenbach & Jay G. Slowik & Stephen M. Platt & Francesco Canonaco & Peter Zotter & Robert Wolf & Sim, 2014. "High secondary aerosol contribution to particulate pollution during haze events in China," Nature, Nature, vol. 514(7521), pages 218-222, October.
    16. Ma, Dan & Zhu, Qing, 2022. "Innovation in emerging economies: Research on the digital economy driving high-quality green development," Journal of Business Research, Elsevier, vol. 145(C), pages 801-813.
    17. Zhai, Huayun & Yang, Min & Chan, Kam C., 2022. "Does digital transformation enhance a firm's performance? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    18. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    19. Li, Zhenghui & Huang, Zimei & Su, Yaya, 2023. "New media environment, environmental regulation and corporate green technology innovation:Evidence from China," Energy Economics, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Yang & Qi Liu, 2024. "Driving Green Innovation Through Digital Transformation: Empirical Insights on Regional Variations," Sustainability, MDPI, vol. 16(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Jiahui & Dai, Sheng & Li, Lin & Cheng, Jinhua, 2024. "How does digital economy development affect renewable energy innovation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Siliang Guo & Yanhua Diao & Junliang Du, 2022. "Coupling Coordination Measurement and Evaluation of Urban Digitalization and Green Development in China," IJERPH, MDPI, vol. 19(22), pages 1-32, November.
    3. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    4. Zhou, Zhongsheng & Li, Zhuo, 2023. "Corporate digital transformation and trade credit financing," Journal of Business Research, Elsevier, vol. 160(C).
    5. Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
    6. Wang, Weilong & Xiao, Deheng & Wang, Jianlong & Wu, Haitao, 2024. "The cost of pollution in the digital era: Impediments of air pollution on enterprise digital transformation," Energy Economics, Elsevier, vol. 134(C).
    7. Yang, Jun & Yang, Dingjian & Cheng, Jixin, 2024. "The non-rivalry of data, directed technical change and the environment: A theoretical study incorporating data as a production factor," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 417-448.
    8. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    9. Yangjun Ren & Botang Li, 2022. "Digital Transformation, Green Technology Innovation and Enterprise Financial Performance: Empirical Evidence from the Textual Analysis of the Annual Reports of Listed Renewable Energy Enterprises in C," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    10. Qiao, Penghua & Liu, Siting & Fung, Hung-Gay & Wang, Chen, 2024. "Corporate green innovation in a digital economy," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 870-883.
    11. Xin Tan & Jinfang Jiao & Ming Jiang & Ming Chen & Wenpeng Wang & Yijun Sun, 2024. "Digital Policy, Green Innovation, and Digital-Intelligent Transformation of Companies," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    12. Songqin Zhao & Diyun Peng & Huwei Wen & Huilin Song, 2022. "Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities?," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    13. Zhang, Yiren & Ran, Congjing, 2023. "Effect of digital economy on air pollution in China? New evidence from the “National Big Data Comprehensive Pilot Area” policy," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 986-1004.
    14. Xu, Chao & Sun, Guanglin & Kong, Tao, 2024. "The impact of digital transformation on enterprise green innovation," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 1-12.
    15. Xinfeng Chang & Jian Su & Zihe Yang, 2022. "The Effect of Digital Economy on Urban Green Transformation—An Empirical Study Based on the Yangtze River Delta City Cluster in China," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    16. Chaohong Na & Xue Chen & Xiaojun Li & Yuting Li & Xiaolan Wang, 2022. "Digital Transformation of Value Chains and CSR Performance," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    17. Xie, Yu & Wu, Desheng, 2024. "How does competition policy affect enterprise digitization? Dual perspectives of digital commitment and digital innovation," Journal of Business Research, Elsevier, vol. 178(C).
    18. Wang, Zhen & Tang, Pei, 2024. "Substantive digital innovation or symbolic digital innovation: Which type of digital innovation is more conducive to corporate ESG performance?," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1212-1228.
    19. Dian, Jie & Song, Tian & Li, Shenglan, 2024. "Facilitating or inhibiting? Spatial effects of the digital economy affecting urban green technology innovation," Energy Economics, Elsevier, vol. 129(C).
    20. Wu, Qingyang & Li, Shanhong, 2024. "Decarbonization by digits: How data factors drive nonlinear sustainable dynamics in manufacturing," Applied Energy, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:3:p:1318-:d:1333087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.