IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222031449.html
   My bibliography  Save this article

Numerical and experimental investigation of the influence of various metal-oxide-based nanoparticles on performance, combustion, and emissions of CI engine fuelled with tamarind seed oil methyl ester

Author

Listed:
  • Kumbhar, Vishal
  • Pandey, Anand
  • Sonawane, Chandrakant R.
  • Panchal, Hitesh
  • Ağbulut, Ümit

Abstract

The present study aims to experimentally and numerically investigate diesel engine's combustion, performance, and exhaust emission characteristics fuelled with tamarind seed oil methyl ester (TSOME) and nanoparticles as fuel additives. The Diesel-RK, a complete thermodynamic cycle engine analysis tool, is employed to assess the engine characteristics. Cerium Oxide (CeO2) and Aluminium Oxide (Al2O3) nanoparticles are introduced as additives and dispersed in pure TSOME at a concentration of 30 ppm to obtain TSOME + CeO2 and TSOME + Al2O3 blends correspondingly. The tests are conducted when the engine is loaded from 0 to 100% with intervals of 25%. The research reveals that incorporating CeO2 and Al2O3 improves the BTE by 17–18% compared to that of TSOME. TSOME + CeO2 and TSOME + Al2O3 substantially decreased CO2, HC, and smoke emissions compared to those of conventional diesel fuel. Furthermore, when CeO2 and Al2O3 nanoparticles are added into the TSOME fuel, oxides of nitrogen emissions are mitigated by 6–7% compared to TSOME by reducing the fuel consumption. Also, the addition of nanoparticles led to an improvement in combustion characteristics compared to pure TSOME due to the high catalyst role of nanoparticles, which accelerate the chemical reactions during the combustion cycle. Furthermore, the nanoparticles-added test fuels have generally presented the competitive results with each other, but the CeO2 nanoparticle presented slightly better results in terms of exhaust emissions, while Al2O3 added test fuel gave slightly better results in terms of engine performance. Finally, the results of this research show that metal oxide-based nanoparticles such as CeO2 and Al2O3 as a fuel additive can improve the characteristics of diesel engines fuelled by biofuels.

Suggested Citation

  • Kumbhar, Vishal & Pandey, Anand & Sonawane, Chandrakant R. & Panchal, Hitesh & Ağbulut, Ümit, 2023. "Numerical and experimental investigation of the influence of various metal-oxide-based nanoparticles on performance, combustion, and emissions of CI engine fuelled with tamarind seed oil methyl ester," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031449
    DOI: 10.1016/j.energy.2022.126258
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222031449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Shiva & Dinesha, P. & Rosen, Marc A., 2019. "Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive," Energy, Elsevier, vol. 185(C), pages 1163-1173.
    2. Beatrice, Carlo & Di Blasio, Gabriele & Guido, Chiara & Cannilla, Catia & Bonura, Giuseppe & Frusteri, Francesco, 2014. "Mixture of glycerol ethers as diesel bio-derivable oxy-fuel: Impact on combustion and emissions of an automotive engine combustion system," Applied Energy, Elsevier, vol. 132(C), pages 236-247.
    3. Gnanasekaran, Sakthivel & Saravanan, N. & Ilangkumaran, M., 2016. "Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel," Energy, Elsevier, vol. 116(P1), pages 1218-1229.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    2. Perumal, Varatharaju & Ilangkumaran, M., 2018. "Water emulsified hybrid pongamia biodiesel as a modified fuel for the experimental analysis of performance, combustion and emission characteristics of a direct injection diesel engine," Renewable Energy, Elsevier, vol. 121(C), pages 623-631.
    3. Singh, Paramvir & Varun, & Chauhan, S.R., 2016. "Carbonyl and aromatic hydrocarbon emissions from diesel engine exhaust using different feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 269-291.
    4. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.
    5. Sergejus Lebedevas & Laurencas Raslavičius, 2021. "Prognostic Assessment of the Performance Parameters for the Industrial Diesel Engines Operated with Microalgae Oil," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    6. Karishma, Shaik Mullan & Rajak, Upendra & Naik, B. Kiran & Dasore, Abhishek & Konijeti, Ramakrishna, 2022. "Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel," Energy, Elsevier, vol. 245(C).
    7. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    9. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    10. Francesco Asdrubali & Franco Cotana & Federico Rossi & Andrea Presciutti & Antonella Rotili & Claudia Guattari, 2015. "Life Cycle Assessment of New Oxy-Fuels from Biodiesel-Derived Glycerol," Energies, MDPI, vol. 8(3), pages 1-16, February.
    11. Asgari, Behrad & Amani, Ehsan, 2017. "A multi-objective CFD optimization of liquid fuel spray injection in dry-low-emission gas-turbine combustors," Applied Energy, Elsevier, vol. 203(C), pages 696-710.
    12. Song, Heping & Liu, Changpeng & Li, Yanfei & Wang, Zhi & Chen, Longfei & He, Xin & Wang, Jianxin, 2018. "An exploration of utilizing low-pressure diesel injection for natural gas dual-fuel low-temperature combustion," Energy, Elsevier, vol. 153(C), pages 248-255.
    13. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    14. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    15. Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
    16. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    17. Kumar, Shiva & Dinesha, P. & Ajay, C.M. & Kabbur, Poojitha, 2020. "Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages," Energy, Elsevier, vol. 197(C).
    18. Stanislaw Szwaja & Michal Gruca & Michal Pyrc & Romualdas Juknelevičius, 2021. "Performance and Exhaust Emissions of a Spark Ignition Internal Combustion Engine Fed with Butanol–Glycerol Blend," Energies, MDPI, vol. 14(20), pages 1-15, October.
    19. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    20. Guirong Wu & Jun Cong Ge & Nag Jung Choi, 2021. "Effect of Ethanol Additives on Combustion and Emissions of a Diesel Engine Fueled by Palm Oil Biodiesel at Idling Speed," Energies, MDPI, vol. 14(5), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222031449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.