IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics096014812401156x.html
   My bibliography  Save this article

A fully-coupled analysis of the spar-type floating offshore wind turbine with bionic fractal heave plate under wind-wave excitation conditions

Author

Listed:
  • Huang, Haoda
  • Liu, Qingsong
  • Iglesias, Gregorio
  • Yue, Minnan
  • Miao, Weipao
  • Ye, Qi
  • Li, Chun
  • Yang, Tingting

Abstract

As shallow coastal areas for the installation of wind turbines approach saturation, wind turbines will need to be installed in deeper areas, requiring floating rather than seabed-fixed substructures. Considering factors such as economy and safety, floating offshore wind turbines (FOWTs) have become the major focus for offshore wind research and development. In the case of spar-type FOWTs, stability in the heave direction poses a challenge. With this in view, in this work a heave plate with bionic fractal structures is mounted on the bottom of the spar-type FOWT. The bionic fractal heave plates are innovatively proposed to further improve the dynamic response of the FOWT. In this study, the aero-hydro-mooring dynamic method of the FOWT is established to develop a reliable numerical solution model through the DFBI module using computational fluid dynamics software STAR-CCM+. The results of fully-coupled simulations of the original FOWT, the FOWT with heave plate (HP-FOWT) and FOWTs with 3∼5-layer bionic fractal heave plate (3∼5BFHP-FOWTs) are presented. Increases in average thrust and power of 0.44 % and 0.99 %, respectively, prove the optimal aerodynamic responses of the 5 BFHP-FOWT. As for the hydrodynamic responses, the average heave response amplitudes of the HP-FOWT and 3∼5BFHP-FOWTs are significantly lower than the original FOWT. The maximum reduction (25.03 %) is obtained by the 5BFHP-FOWT. The bionic fractal heave plate will slightly reduce the stability of the pitch response. For the standard deviation of the heave, surge, mooring lines 1 and 2 responses, the 5BFHP-FOWT decreases by 17.97 %, 11.44 %, 17.50 %, and 8.25 % respectively, showing the best stability improvement among the HP-FOWT and BFHP-FOWTs. Furthermore, the vortices in the bionic fractal heave plates are analyzed in detail at the Z = ±0.25 m section of the flow field. Only when the specific fractal layer number is 5, the number and curl of the vortices in the fractal structure increase significantly, showing excellent effect of the energy absorption.

Suggested Citation

  • Huang, Haoda & Liu, Qingsong & Iglesias, Gregorio & Yue, Minnan & Miao, Weipao & Ye, Qi & Li, Chun & Yang, Tingting, 2024. "A fully-coupled analysis of the spar-type floating offshore wind turbine with bionic fractal heave plate under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s096014812401156x
    DOI: 10.1016/j.renene.2024.121088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812401156X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian, T. & Lackner, M.A., 2012. "Development of a free vortex wake method code for offshore floating wind turbines," Renewable Energy, Elsevier, vol. 46(C), pages 269-275.
    2. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    3. de Oliveira, M. & Puraca, R.C. & Carmo, B.S., 2022. "Blade-resolved numerical simulations of the NREL offshore 5 MW baseline wind turbine in full scale: A study of proper solver configuration and discretization strategies," Energy, Elsevier, vol. 254(PB).
    4. Fang, Yuan & Li, Gen & Duan, Lei & Han, Zhaolong & Zhao, Yongsheng, 2021. "Effect of surge motion on rotor aerodynamics and wake characteristics of a floating horizontal-axis wind turbine," Energy, Elsevier, vol. 218(C).
    5. Sayed, M. & Klein, L. & Lutz, Th. & Krämer, E., 2019. "The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 140(C), pages 304-318.
    6. Choiniere, Michael & Davis, Jacob & Nguyen, Nhu & Tom, Nathan & Fowler, Matthew & Thiagarajan, Krish, 2022. "Hydrodynamics and load shedding behavior of a variable-geometry oscillating surge wave energy converter (OSWEC)," Renewable Energy, Elsevier, vol. 194(C), pages 875-884.
    7. Quallen, Sean & Xing, Tao, 2016. "CFD simulation of a floating offshore wind turbine system using a variable-speed generator-torque controller," Renewable Energy, Elsevier, vol. 97(C), pages 230-242.
    8. van den Broek, Maarten J. & De Tavernier, Delphine & Sanderse, Benjamin & van Wingerden, Jan-Willem, 2022. "Adjoint optimisation for wind farm flow control with a free-vortex wake model," Renewable Energy, Elsevier, vol. 201(P1), pages 752-765.
    9. Guo, Yize & Wang, Xiaodong & Mei, Yuanhang & Ye, Zhaoliang & Guo, Xiaojiang, 2022. "Effect of coupled platform pitch-surge motions on the aerodynamic characters of a horizontal floating offshore wind turbine," Renewable Energy, Elsevier, vol. 196(C), pages 278-297.
    10. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    11. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Luo, Shuai & Sun, Kang & Niu, Kailun, 2022. "Effect of trailing edge dual synthesis jets actuator on aerodynamic characteristics of a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 238(PC).
    12. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    13. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    2. Yang, Lin & Liao, Kangping & Ma, Qingwei & Ma, Gang & Sun, Hanbing, 2023. "Investigation of wake characteristics of floating offshore wind turbine with control strategy using actuator curve embedding method," Renewable Energy, Elsevier, vol. 218(C).
    3. Cai, Yefeng & Zhao, Haisheng & Li, Xin & Liu, Yuanchuan, 2023. "Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 264(C).
    4. Zhou, Le & Shen, Xin & Ma, Lu & Chen, Jiajia & Ouyang, Hua & Du, Zhaohui, 2024. "Unsteady aerodynamics of the floating offshore wind turbine due to the trailing vortex induction and airfoil dynamic stall," Energy, Elsevier, vol. 304(C).
    5. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    6. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    7. Micallef, Daniel & Rezaeiha, Abdolrahim, 2021. "Floating offshore wind turbine aerodynamics: Trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Kyle, Ryan & Lee, Yeaw Chu & Früh, Wolf-Gerrit, 2020. "Propeller and vortex ring state for floating offshore wind turbines during surge," Renewable Energy, Elsevier, vol. 155(C), pages 645-657.
    9. Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
    10. Zhang, Zhihao & Yang, Haoran & Zhao, Yongsheng & Han, Zhaolong & Zhou, Dai & Zhang, Jianhua & Tu, Jiahuang & Chen, Mingsheng, 2024. "A novel wake control strategy for a twin-rotor floating wind turbine: Mitigating wake effect," Energy, Elsevier, vol. 287(C).
    11. Wang, Xinbao & Cai, Chang & Cai, Shang-Gui & Wang, Tengyuan & Wang, Zekun & Song, Juanjuan & Rong, Xiaomin & Li, Qing'an, 2023. "A review of aerodynamic and wake characteristics of floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    12. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    13. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    14. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    15. Huang, Shengxian & Hu, Yu & Wang, Ying, 2021. "Research on aerodynamic performance of a novel dolphin head-shaped bionic airfoil," Energy, Elsevier, vol. 214(C).
    16. Deng, Sijia & Liu, Yingyi & Ning, Dezhi, 2023. "Fully coupled aero-hydrodynamic modelling of floating offshore wind turbines in nonlinear waves using a direct time-domain approach," Renewable Energy, Elsevier, vol. 216(C).
    17. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    18. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    19. Su, Keye & Bliss, Donald, 2019. "A novel hybrid free-wake model for wind turbine performance and wake evolution," Renewable Energy, Elsevier, vol. 131(C), pages 977-992.
    20. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s096014812401156x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.