IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222030675.html
   My bibliography  Save this article

Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix

Author

Listed:
  • Liu, Wei
  • Han, Dongyang
  • Xu, Hao
  • Chu, Xiangyu
  • Qin, Yueping

Abstract

Migration behaviors of coalbed methane (CBM) are the core issue for gas extraction, but in terms of coal seams considered as a dual-porosity medium, gas migration investigations have rarely been addressed. This work developed three gas migration models in the dual-porosity coal seam around a borehole, in which gas flow in coal matrix was driven by the pressure gradient (PG model), concentration gradient (MCFP model) and free gas density gradient (MDFP model), respectively. The numerical solutions of these models were compared with field measurements to determine the optimal one. The results show that (i) the simulation results of the MDFP model are in better agreement with the observed data, and its maximum relative error is less than 5%, which is much smaller than that of the PG model and MCFP model, so the MDFP model can reflect the gas migration behaviors in dual-porosity coal seams more effectively; (ii) the gas seepage in fractures controls the initial gas emission rate, and the gas diffusion in coal matrix then gradually dominates gas emission in the later stage, where diffusion behavior in the matrix is more consistent with the driver of the free gas density gradient; (iii) sensitivity analysis indicates gas emission rates of the borehole are positively correlated with original gas pressure and fracture permeability coefficient, but negatively correlated with matrix radius. This research contributes to providing a theoretical basis for CBM production prediction.

Suggested Citation

  • Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030675
    DOI: 10.1016/j.energy.2022.126181
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126181?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    2. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Rijun & Wen, Hu & Fan, Shixing & Wang, Hu & Cheng, Xiaojiao & Mi, Wansheng & Liu, Bocong & Liu, Mingyang, 2024. "Migration characteristics of constant elements in the process of coal dissolution by liquid CO2," Energy, Elsevier, vol. 295(C).
    2. Dai, Shijie & Xu, Jiang & Jia, Li & Chen, Jieren & Yan, Fazhi & Chen, Yuexia & Peng, Shoujian, 2023. "On the 3D fluid behavior during CBM coproduction in a multi pressure system: Insights from experimental analysis and mathematical models," Energy, Elsevier, vol. 283(C).
    3. Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    2. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    3. Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
    4. Kai Wang & Qichao Fu & Xiang Zhang & Hengyi Jia, 2021. "Experimental Investigation on Strain Changes during CO 2 Adsorption of Raw Coal Sample: Temperature and Effective Stress," Energies, MDPI, vol. 14(3), pages 1-12, January.
    5. Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad & Dong, Xiucheng, 2023. "Does industrial convergence mitigate CO2 emissions in China? A quasi-natural experiment on “Triple Play” Reform," Energy Economics, Elsevier, vol. 128(C).
    6. Mandadige Samintha Anne Perera, 2018. "A Comprehensive Overview of CO 2 Flow Behaviour in Deep Coal Seams," Energies, MDPI, vol. 11(4), pages 1-23, April.
    7. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    8. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    10. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
    11. Vishal, Vikram & Mahanta, Bankim & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2018. "Simulation of CO2 enhanced coalbed methane recovery in Jharia coalfields, India," Energy, Elsevier, vol. 159(C), pages 1185-1194.
    12. Lu, Wei & Gao, Ao & Sun, Weili & Liang, Yuntao & He, Zhenglong & Li, Jinliang & Sun, Yong & Song, Shuanglin & Meng, Shaocong & Cao, Yingjiazi, 2022. "Experimental study on inhibition of spontaneous combustion of different-rank coals by high-performance m-Cresol water-based inhibitor solutions," Energy, Elsevier, vol. 261(PA).
    13. Zeng, Isabella Yunfei & Du, Chenmu & Xiong, Jianliang & Gong, Ting & Wu, Tian, 2024. "Tax policy or carbon emission quota: A theory on traditional ICEV transportation regulation," Energy, Elsevier, vol. 289(C).
    14. Liu, Xianmei & Peng, Rui & Bai, Caiquan & Chi, Yuanying & Liu, Yuxiang, 2023. "Economic cost, energy transition, and pollutant mitigation: The effect of China's different mitigation pathways toward carbon neutrality," Energy, Elsevier, vol. 275(C).
    15. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    16. Lv, Shuaishuai & Wang, Hui & Meng, Xiangping & Yang, Chengdong & Wang, Mingyue, 2022. "Optimal capacity configuration model of power-to-gas equipment in wind-solar sustainable energy systems based on a novel spatiotemporal clustering algorithm: A pathway towards sustainable development," Renewable Energy, Elsevier, vol. 201(P1), pages 240-255.
    17. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    18. Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).
    19. Gao, Fei & Bai, Qihui & Jia, Zhe & Zhang, Xun & Li, Yingdi, 2024. "Influence and inerting mechanism of inert gas atmospheres on the characteristics of oxidative spontaneous combustion in coal," Energy, Elsevier, vol. 293(C).
    20. Wang, Kai & Huang, Hao & Deng, Jun & Zhang, Yanni & Wang, Qun, 2024. "A spatio-temporal temperature prediction model for coal spontaneous combustion based on back propagation neural network," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.