IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924002903.html
   My bibliography  Save this article

CO2 utilization and sequestration in organic-rich shale from the nanoscale perspective

Author

Listed:
  • Meng, Siwei
  • Liu, Chen
  • Liu, Yueliang
  • Rui, Zhenhua
  • Liu, He
  • Jin, Xu
  • Tao, Jiaping

Abstract

As the main components of shale gas, the adsorption behavior of CH4 and n-C4H10 in organic matter is of great significance to the recovery of shale gas. In this work, organic matter is selected as the object, and different types and scales of kerogen slit nanopore models are constructed based on the improved diamond-filling method. Moreover, the adsorption behaviors of CH4/CO2 and n-C4H10/CO2 mixture with organic matter are investigated at different pressure, temperature, and pore size conditions, and the subsequent implications for shale gas recovery and CO2 sequestration are summarized. The results show that the density of CO2 formed near the surface of organic nanopores is significantly higher than that of CH4, while the density of n-C4H10 formed near the surface of organic nanopores is significantly higher than that of CO2, and the order of the interaction energy of the three fluid molecules on the kerogen is: n-C4H10 > CO2 > CH4. Therefore, CO2 injection performs a positive effect on light hydrocarbon component CH4 recovery, whereas is detrimental to the recovery of heavy hydrocarbon component n-C4H10. Interestingly, the three kinds of fluid molecules exhibit stronger adsorption on type II kerogen than on type I kerogen, suggesting that when implemented in rich in type II kerogen shale reservoirs, the available reserves of shale gas will be higher and the CO2 sequestration strength will be greater. The proportion of dissolved phase and adsorbed phase CO2 in micropores is significantly higher than that in mesopores, indicating that the micropore is the ideal space for CO2 sequestration. Specifically, the sensitivity of CH4 and organic matter adsorption to reservoir pressure is stronger than that of n-C4H10, and the optimal pressure for CO2 recovery of shale gas is about 25 MPa. Particularly, the free phase density of n-C4H10 is the highest at 333.15 K, which implies that the recovery of n-C4H10 is the highest at temperature. In contrast, low temperature is beneficial to maintaining a more stable adsorption state of CO2 and exists a positive impact on CO2 sequestration. We observe that the maximum adsorption density of CO2 in 3 nm kerogen was significantly higher than that in 1 nm pores, thus CO2 in mesopores is more favorable to CH4 recovery than in micropores. Note that CO2 injection is more conducive to improving the CH4 recovery in the micropores of type I kerogen and the n-C4H10 recovery in the mesopores of type II kerogen. This study helps to deepen the understanding of the adsorption behaviors of shale organic matter with CH4, n-C4H10, and CO2, Furthermore, it may provide guidance for improving shale oil and gas recovery and CO2 sequestration in future sites.

Suggested Citation

  • Meng, Siwei & Liu, Chen & Liu, Yueliang & Rui, Zhenhua & Liu, He & Jin, Xu & Tao, Jiaping, 2024. "CO2 utilization and sequestration in organic-rich shale from the nanoscale perspective," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002903
    DOI: 10.1016/j.apenergy.2024.122907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yueliang & Rui, Zhenhua & Yang, Tao & Dindoruk, Birol, 2022. "Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs," Applied Energy, Elsevier, vol. 311(C).
    2. Vishal, V. & Singh, Lokendra & Pradhan, S.P. & Singh, T.N. & Ranjith, P.G., 2013. "Numerical modeling of Gondwana coal seams in India as coalbed methane reservoirs substituted for carbon dioxide sequestration," Energy, Elsevier, vol. 49(C), pages 384-394.
    3. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    4. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    2. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    3. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    4. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    5. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    6. Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).
    7. Mauricio Marrone & Martina K Linnenluecke, 2020. "Interdisciplinary Research Maps: A new technique for visualizing research topics," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    8. Takeshi Tsuji & Masao Sorai & Masashige Shiga & Shigenori Fujikawa & Toyoki Kunitake, 2021. "Geological storage of CO2–N2–O2 mixtures produced by membrane‐based direct air capture (DAC)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 610-618, August.
    9. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    10. Turgay Ertekin & Qian Sun, 2019. "Artificial Intelligence Applications in Reservoir Engineering: A Status Check," Energies, MDPI, vol. 12(15), pages 1-22, July.
    11. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    12. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    13. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    14. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    15. Turaj S. Faran & Lennart Olsson, 2018. "Geoengineering: neither economical, nor ethical—a risk–reward nexus analysis of carbon dioxide removal," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 63-77, February.
    16. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    17. Hanamertani, Alvinda Sri & Ahmed, Shehzad, 2021. "Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency," Energy, Elsevier, vol. 228(C).
    18. Kai Wang & Qichao Fu & Xiang Zhang & Hengyi Jia, 2021. "Experimental Investigation on Strain Changes during CO 2 Adsorption of Raw Coal Sample: Temperature and Effective Stress," Energies, MDPI, vol. 14(3), pages 1-12, January.
    19. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    20. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924002903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.