IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223030207.html
   My bibliography  Save this article

Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral

Author

Listed:
  • Zhao, Xingguo
  • Dai, Guanglong
  • Qin, Ruxiang
  • Zhou, Liang
  • Li, Jinhu
  • Li, Jinliang

Abstract

According to the different characteristics of coal spontaneous combustion (CSC), different countermeasures can effectively prevent CSC. In this paper, a new characteristic parameter, the oxygen consumption rate integral (OCRI), was proposed. The characteristics of CSC during the latent period and the effect of low oxygen concentration (0–20.96 %) on the CSC were comprehensively examined. Using a lab-built closed oxidation system, isothermal oxidation experiments were performed on different grades of coals at different temperatures. The OCRI was obtained by integrating the oxygen consumption rate as a function of oxygen concentration. The OCRI expresses the sum of the rates of oxygen consumption at different concentrations of oxygen and can be used as an identification index for the propensity of CSC. The kinetic basis for this approach is the variability of initial oxygen consumption rates and oxygen reaction orders for different coals. Finally, the physicochemical structure of the coal was measured by N2 adsorption and IR analysis. The results were correlated with the OCRI. On this basis, the main microscopic reaction pathways affecting the CSC were revealed. The results can aid in the future direction for research and development of high-efficiency inhibitors.

Suggested Citation

  • Zhao, Xingguo & Dai, Guanglong & Qin, Ruxiang & Zhou, Liang & Li, Jinhu & Li, Jinliang, 2024. "Spontaneous combustion characteristics of coal based on the oxygen consumption rate integral," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030207
    DOI: 10.1016/j.energy.2023.129626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223030207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinhu & Lu, Wei & Li, Jinliang & Yang, Yongliang & Li, Zenghua, 2023. "Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal," Energy, Elsevier, vol. 272(C).
    2. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    3. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    4. Guo, Shengli & Yang, Wenwang & Yuan, Shujie & Zhuo Yan, & Geng, Weile, 2022. "Experimental investigation of erosion effect on microstructure and oxidation characteristics of long-flame coal," Energy, Elsevier, vol. 259(C).
    5. Li, Jinhu & Li, Zenghua & Yang, Yongliang & Duan, Yujian & Xu, Jun & Gao, Ruiting, 2019. "Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures," Energy, Elsevier, vol. 185(C), pages 28-38.
    6. Li, Lei & Ren, Ting & Zhong, Xiaoxing & Wang, Jiantao, 2022. "Study of ambient temperature oxidation in low metamorphic coal and the oxidation mechanism," Energy, Elsevier, vol. 252(C).
    7. Xu, Xiaoxue & Yuan, Shujie & Li, Jinhu & Guo, Shengli & Yan, Zhuo, 2023. "Preparation of lignin-based intumescent nanogel and its mechanism of inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 275(C).
    8. Zhang, Yanni & Shu, Pan & Deng, Jun & Duan, Zhengxiao & Li, Lele & Zhang, Lulu, 2022. "Analysis of oxidation pathways for characteristic groups in coal spontaneous combustion," Energy, Elsevier, vol. 254(PA).
    9. Jiang, Yuan & Zong, Peijie & Ming, Xue & Wei, Haixin & Zhang, Xin & Bao, Yuan & Tian, Bin & Tian, Yuanyu & Qiao, Yingyun, 2021. "High-temperature fast pyrolysis of coal: An applied basic research using thermal gravimetric analyzer and the downer reactor," Energy, Elsevier, vol. 223(C).
    10. Li, Jin-liang & Lu, Wei & Li, Jin-hu & Zhang, Qinsong & Zhuo, Hui, 2022. "Thermodynamics of oxygen-containing intermediates and their role in coal spontaneous combustion," Energy, Elsevier, vol. 260(C).
    11. Tan, Bo & Cheng, Gang & Fu, Shuhui & Wang, Haiyan & Li, Zixu & Zhang, Xuedong, 2022. "Molecular simulation for physisorption characteristics of O2 in low-rank coals," Energy, Elsevier, vol. 242(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).
    2. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    3. Meng, Xianliang & Sun, Jiali & Chu, Ruizhi & Fan, Lulu & Jiang, Xiaofeng & Tang, Ludeng & Zheng, Donglin, 2023. "Effect of active functional groups in coal on the release behavior of small molecule gases during low-temperature oxidation," Energy, Elsevier, vol. 273(C).
    4. Zhang, Xun & Lu, Bing & Qiao, Ling & Ding, Cong, 2023. "Study on the kinetics of chemical structure reaction in coal catalyzed by OH free radicals," Energy, Elsevier, vol. 285(C).
    5. Li, Jinhu & Lu, Wei & Li, Jinliang & Yang, Yongliang & Li, Zenghua, 2023. "Mutual conversion of active sites and oxygen-containing functional groups during low-temperature oxidation of coal," Energy, Elsevier, vol. 272(C).
    6. Huang, Jiliang & Tan, Bo & Gao, Liyang & Shao, Zhuangzhuang & Wang, Haiyan & Chen, Zhen, 2023. "A multi-channel reaction model study of key primary and secondary active groups in the low-temperature oxidation process of coal," Energy, Elsevier, vol. 283(C).
    7. Liu, Hao & Li, Zenghua & Miao, Guodong & Yang, Jingjing & Wu, Xiangqiang & Li, Jiahui, 2023. "Insight into the chemical reaction process of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 263(PB).
    8. Liu, Qiqi & Liu, Chuang & Ma, Jiayu & Liu, Zhenyi & Sun, Lulu, 2024. "Comprehensive evaluation of low-temperature oxidation characteristics of low-rank bituminous coal and oil shale," Energy, Elsevier, vol. 294(C).
    9. Li, Jinliang & Lu, Hao & Lu, Wei & Li, Jinhu & Zhang, Qingsong & Zhuo, Hui, 2024. "Study on the kinetic characteristics and control steps of gas production in coal spontaneous combustion under the oxidation path," Energy, Elsevier, vol. 295(C).
    10. Li, Jin-liang & Lu, Wei & Li, Jin-hu & Zhang, Qinsong & Zhuo, Hui, 2022. "Thermodynamics of oxygen-containing intermediates and their role in coal spontaneous combustion," Energy, Elsevier, vol. 260(C).
    11. Duo, Zhang & Xuexue, Liu & Hu, Wen & Shoushi, Zhang & Hongquan, Wang & Yi, Sun & Hao, Feng, 2024. "Effect of nucleating agents on fire prevention of dry ice from compound inert gas," Energy, Elsevier, vol. 286(C).
    12. Changkui Lei & Xueqiang Shi & Lijuan Jiang & Cunbao Deng & Jun Nian & Yabin Gao, 2023. "Study on the Effect of External Air Supply and Temperature Control on Coal Spontaneous Combustion Characteristics," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    13. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    14. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    15. Zhang, Yifan & Yang, Yongliang & Wang, Guoqin & Li, Purui & Liu, Hao & Wang, Huazhen & Gao, Kaiyang, 2024. "Changes in physical and chemical structure and Full-stage oxidation characteristics of coal caused by igneous intrusion," Energy, Elsevier, vol. 288(C).
    16. Lei Li & Ting Ren & Xiaoxing Zhong & Jiantao Wang, 2023. "Study of the Oxidation Characteristics and CO Production Mechanism of Low-Rank Coal Goaf," Energies, MDPI, vol. 16(8), pages 1-16, April.
    17. Zhang, Leilin & Wen, Chenchen & Li, Shengli & Yang, Mengdan, 2024. "Evolution and oxidation properties of the functional groups of coals after water immersion and air drying," Energy, Elsevier, vol. 288(C).
    18. Li, Jinhu & Lu, Wei & Wang, Yang & Li, Jinliang & Yang, Yongliang, 2023. "Effect of organic carboxylates in coal on the production of active sites and coal self-ignition behavior," Energy, Elsevier, vol. 282(C).
    19. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    20. Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.