IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v201y2022ip1p240-255.html
   My bibliography  Save this article

Optimal capacity configuration model of power-to-gas equipment in wind-solar sustainable energy systems based on a novel spatiotemporal clustering algorithm: A pathway towards sustainable development

Author

Listed:
  • Lv, Shuaishuai
  • Wang, Hui
  • Meng, Xiangping
  • Yang, Chengdong
  • Wang, Mingyue

Abstract

For wind-solar sustainable energy systems with a large amount of abandoned wind and solar energy and carbon dioxide emissions, a power-to-gas equipment can be introduced to synthesize methane together, which is an effective way to alleviate the greenhouse effect, improve the utilization rate of new energy, and promote sustainable development. Focusing on how to perform the optimal capacity configuration of the newly introduced power-to-gas equipment more accurately and simply, this paper make progress through a more similar scenario reduction and a more accurate power-to-gas capacity configuration model. First, in view of the problem that the existing scenario reduction methods are difficult to take into account the coherent temporal characteristics and spatial amplitude characteristics, a novel multi-source-load double-layer spatiotemporal clustering algorithm is proposed. Second, in view of the problem that the power-to-gas equipment can only capture the actual carbon dioxide, a more comprehensive model considering the coupling relationship of multi-energy flows such as electricity-natural gas-hydrogen-oxygen-actual carbon dioxide-virtual carbon dioxide is proposed. The example analysis shows that the proposed strategies can reduce the error rate of the power-to-gas capacity configuration with a similar calculation amount.

Suggested Citation

  • Lv, Shuaishuai & Wang, Hui & Meng, Xiangping & Yang, Chengdong & Wang, Mingyue, 2022. "Optimal capacity configuration model of power-to-gas equipment in wind-solar sustainable energy systems based on a novel spatiotemporal clustering algorithm: A pathway towards sustainable development," Renewable Energy, Elsevier, vol. 201(P1), pages 240-255.
  • Handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:240-255
    DOI: 10.1016/j.renene.2022.10.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122015725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santosh Ghimire & Seyed Morteza Alizadeh, 2021. "Developing a Decision Tree Algorithm for Wind Power Plants Siting and Sizing in Distribution Networks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    2. Eyup Dogan & Syed Faisal Shah, 2021. "Analyzing the Role of Renewable Energy and Energy Intensity in the Ecological Footprint of the United Arab Emirates," Sustainability, MDPI, vol. 14(1), pages 1-12, December.
    3. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    4. Dogan, Eyup & Madaleno, Mara & Taskin, Dilvin & Tzeremes, Panayiotis, 2022. "Investigating the spillovers and connectedness between green finance and renewable energy sources," Renewable Energy, Elsevier, vol. 197(C), pages 709-722.
    5. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Metawa, Noura & Dogan, Eyup & Taskin, Dilvin, 2022. "Analyzing the nexus of green economy, clean and financial technology," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 385-396.
    7. Yu, Guangzheng & Liu, Chengquan & Tang, Bo & Chen, Rusi & Lu, Liu & Cui, Chaoyue & Hu, Yue & Shen, Lingxu & Muyeen, S.M., 2022. "Short term wind power prediction for regional wind farms based on spatial-temporal characteristic distribution," Renewable Energy, Elsevier, vol. 199(C), pages 599-612.
    8. Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
    9. Wang, Rutian & Wen, Xiangyun & Wang, Xiuyun & Fu, Yanbo & Zhang, Yu, 2022. "Low carbon optimal operation of integrated energy system based on carbon capture technology, LCA carbon emissions and ladder-type carbon trading," Applied Energy, Elsevier, vol. 311(C).
    10. Muhammad Irfan & Zhen-Yu Zhao & Munir Ahmad & Marie Claire Mukeshimana, 2019. "Solar Energy Development in Pakistan: Barriers and Policy Recommendations," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
    11. Taskin, Dilvin & Dogan, Eyup & Madaleno, Mara, 2022. "Analyzing the relationship between energy efficiency and environmental and financial variables: A way towards sustainable development," Energy, Elsevier, vol. 252(C).
    12. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    13. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qunli & Li, Chunxiang, 2023. "Modeling and operation optimization of hydrogen-based integrated energy system with refined power-to-gas and carbon-capture-storage technologies under carbon trading," Energy, Elsevier, vol. 270(C).
    2. Li, Yanbin & Sun, Yanting & Liu, Jiechao & Liu, Chang & Zhang, Feng, 2023. "A data driven robust optimization model for scheduling near-zero carbon emission power plant considering the wind power output uncertainties and electricity-carbon market," Energy, Elsevier, vol. 279(C).
    3. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    4. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    5. Zhang, Jinliang & Liu, Ziyi, 2024. "Low carbon economic scheduling model for a park integrated energy system considering integrated demand response, ladder-type carbon trading and fine utilization of hydrogen," Energy, Elsevier, vol. 290(C).
    6. Wang, Xuan & Wang, Shouxiang & Zhao, Qianyu & Lin, Zhuoran, 2023. "Low-carbon coordinated operation of electric-heat-gas-hydrogen interconnected system and benchmark design considering multi-energy spatial and dynamic coupling," Energy, Elsevier, vol. 279(C).
    7. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    8. Gao, Jianwei & Meng, Qichen & Liu, Jiangtao & Wang, Ziying, 2024. "Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading," Renewable Energy, Elsevier, vol. 221(C).
    9. Qiu, Haifeng & Vinod, Ashwin & Lu, Shuai & Gooi, Hoay Beng & Pan, Guangsheng & Zhang, Suhan & Veerasamy, Veerapandiyan, 2023. "Decentralized mixed-integer optimization for robust integrated electricity and heat scheduling," Applied Energy, Elsevier, vol. 350(C).
    10. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).
    11. Dong, Yingchao & Zhang, Hongli & Ma, Ping & Wang, Cong & Zhou, Xiaojun, 2023. "A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties," Energy, Elsevier, vol. 274(C).
    12. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    13. Huang, Haiping & Huang, Baolian & Sun, Aijun, 2023. "How do mineral resources influence eco-sustainability in China? Dynamic role of renewable energy and green finance," Resources Policy, Elsevier, vol. 85(PA).
    14. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    15. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    16. Jiaqi Wu & Qian Zhang & Yangdong Lu & Tianxi Qin & Jianyong Bai, 2023. "Source-Load Coordinated Low-Carbon Economic Dispatch of Microgrid including Electric Vehicles," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    17. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    18. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    19. Zhang, Zhuo & Zhao, Yongliang & Cai, Haiya & Ajaz, Tahseen, 2023. "Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies," Renewable Energy, Elsevier, vol. 205(C), pages 608-616.
    20. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:240-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.