IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007783.html
   My bibliography  Save this article

Migration characteristics of constant elements in the process of coal dissolution by liquid CO2

Author

Listed:
  • Li, Rijun
  • Wen, Hu
  • Fan, Shixing
  • Wang, Hu
  • Cheng, Xiaojiao
  • Mi, Wansheng
  • Liu, Bocong
  • Liu, Mingyang

Abstract

The effect of liquid CO2 on coal dissolution plays a key role in improving coal bed methane (CBM) recovery and CO2 geological storage. In order to study the effect of liquid CO2–H2O reaction on the migration of mineral constant elements in coal, three kinds of coal samples (lignite, bituminous coal, and anthracite) with different degrees of metamorphism were selected as the research objects. The one-factor experiments of dissolution of liquid CO2 and water-bearing coal samples were carried out by simulating the temperature and pressure of the stratum. X-ray fluorescence spectroscopy (XRF) was used to test the changes in the relative content of constant elements in coal samples after liquid CO2 injection under different pressure conditions. Scanning electron microscopy (SEM) was utilized to observe the evolution pattern of the surface features of the coal before and after the dissolution of liquid CO2. A quantitative analysis of coal pore development characteristics was conducted based on low-temperature N2 adsorption/desorption experiments, and isothermal adsorption experiments were carried out before and after etching the coal samples to understand the adsorption characteristics of CH4 and CO2 by coal under different pressure conditions. The research results indicated that the migration ability of constant elements in coal showed a trend of first decreasing and then increasing with the increasing degree of coal metamorphism. Among the three selected coal samples, the migration ability of constant elements was found to be strongest in anthracite, followed by lignite and bituminous coal. Most of the element migration in coal was carried out through chemical reactions (hydrolysis, carbonation, redox), while some elements were primarily transported through physical means (such as the low-temperature impact of liquid CO2). The dissolution process expands the original pore space of coal and generates new pores, greatly increasing the coal's capacity for CO2 adsorption. These findings deepen our understanding of mineral dissolution in coal by liquid CO2 and provide important insights for achieving efficient and long-term coalbed CO2 geological storage and enhanced methane recovery techniques.

Suggested Citation

  • Li, Rijun & Wen, Hu & Fan, Shixing & Wang, Hu & Cheng, Xiaojiao & Mi, Wansheng & Liu, Bocong & Liu, Mingyang, 2024. "Migration characteristics of constant elements in the process of coal dissolution by liquid CO2," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007783
    DOI: 10.1016/j.energy.2024.131006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    2. Liu, Wei & Han, Dongyang & Xu, Hao & Chu, Xiangyu & Qin, Yueping, 2023. "Modeling of gas migration in a dual-porosity coal seam around a borehole: the effects of three types of driving forces in coal matrix," Energy, Elsevier, vol. 264(C).
    3. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    4. Ningning Zhao & Tianfu Xu & Kairan Wang & Hailong Tian & Fugang Wang, 2018. "Experimental study of physical‐chemical properties modification of coal after CO2 sequestration in deep unmineable coal seams," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 510-528, June.
    5. Wen, Hu & Mi, Wansheng & Fan, Shixing & Liu, Mingyang & Cheng, Xiaojiao & Wang, Hu, 2023. "Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine," Energy, Elsevier, vol. 266(C).
    6. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Sun, Yong & Yu, Xu, 2022. "Feasibility investigation of enhanced coalbed methane recovery by steam injection," Energy, Elsevier, vol. 255(C).
    7. Mi, Wansheng & Wen, Hu & Fan, Shixing & Wang, Shibin & Wu, Xueming & Wei, Gaoming & Liu, Bocong & Li, Rijun & Cheng, Xiaojiao & Liu, Mingyang, 2023. "Correlation analysis of injection parameters for low-medium pressure injection of liquid CO2 for CH4 displacement in coal seams," Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Rijun & Wen, Hu & Wang, Hu & Fan, Shixing & Mi, Wansheng & Liu, Bocong & Cheng, Xiaojiao & Liu, Mingyang, 2024. "Experimental simulation of water-coal interactions during liquid CO2 injection into coal beds," Energy, Elsevier, vol. 295(C).
    2. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    3. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    4. Mi, Wansheng & Wen, Hu & Fan, Shixing & Wang, Shibin & Wu, Xueming & Wei, Gaoming & Liu, Bocong & Li, Rijun & Cheng, Xiaojiao & Liu, Mingyang, 2023. "Correlation analysis of injection parameters for low-medium pressure injection of liquid CO2 for CH4 displacement in coal seams," Energy, Elsevier, vol. 278(C).
    5. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    6. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).
    7. Zhou, Yan & Guan, Wei & Cong, Peichao & Sun, Qiji, 2022. "Effects of heterogeneous pore closure on the permeability of coal involving adsorption-induced swelling: A micro pore-scale simulation," Energy, Elsevier, vol. 258(C).
    8. Liu, Wei & Zhang, Fengjie & Gao, Tiegang & Chu, Xiangyu & Qin, Yueping, 2023. "Efficient prevention of coal spontaneous combustion using cooling nitrogen injection in a longwall gob: An application case," Energy, Elsevier, vol. 281(C).
    9. Bai, Gang & Zhou, Zhongjie & Wang, Jue & Tian, Xiangliang & Zhou, Xihua & Li, Xianlin & Chen, Ying, 2023. "Experimental study on damage law of liquid CO2 cyclic freeze–thaw coal," Energy, Elsevier, vol. 284(C).
    10. Wen, Hu & Mi, Wansheng & Fan, Shixing & Liu, Mingyang & Cheng, Xiaojiao & Wang, Hu, 2023. "Determining the reasonable volume required to inject liquid CO2 into a single hole and displace CH4 within the coal seam in bedding boreholes: case study of SangShuPing coal mine," Energy, Elsevier, vol. 266(C).
    11. Abid, Hussein Rasool & Iglauer, Stefan & Al-Yaseri, Ahmed & Keshavarz, Alireza, 2021. "Drastic enhancement of CO2 adsorption capacity by negatively charged sub-bituminous coal," Energy, Elsevier, vol. 233(C).
    12. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie, 2023. "Experimental study on the effect of high-temperature nitrogen immersion on the nanoscale pore structure of different lithotypes of coal," Energy, Elsevier, vol. 284(C).
    13. Wang, Youshi & Wang, Hanpeng & Sun, Dekang & Lin, Chunjin & Yu, Xinping & Hou, Fubin & Bai, Zihan, 2024. "Permeability evolution of deep-buried coal based on NMR analysis: CO2 adsorption and water content effects," Energy, Elsevier, vol. 289(C).
    14. Guo, Haijun & Yu, Yingjie & Wang, Yunhe & Wang, Kai & Yuan, Liang & Xu, Chao & Ren, Bo, 2024. "Experimental study on the desorption law and diffusion kinetic characteristics of gas in raw coal and tectonic coal," Energy, Elsevier, vol. 289(C).
    15. Bai, Gang & Su, Jun & Fu, Shigen & Li, Xueming & Zhou, Xihua & Wang, Jue & Liu, Zhengdong & Zhang, Xun, 2024. "Effect of CO2 injection on the gas desorption and diffusion kinetics: An experimental study," Energy, Elsevier, vol. 288(C).
    16. Zhang, Hewei & Shen, Jian & Wang, Geoff & Li, Kexin & Fang, Xiaojie & Jing, Qu, 2023. "Differential heat transfer characteristics of coal macerals and their control mechanism: At the mesoscale," Energy, Elsevier, vol. 280(C).
    17. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    18. Pang, Mingkun & Zhang, Tianjun & Ji, Xiang & Wu, Jinyu & Song, Shuang, 2022. "Measurement of the coefficient of seepage characteristics in pore-crushed coal bodies around gas extraction boreholes," Energy, Elsevier, vol. 254(PA).
    19. Liu, Huang & Yao, Desong & Yang, Bowen & Li, Huashi & Guo, Ping & Du, Jianfen & Wang, Jian & Yang, Shuokong & Wen, Lianhui, 2022. "Experimental investigation on the mechanism of low permeability natural gas extraction accompanied by carbon dioxide sequestration," Energy, Elsevier, vol. 253(C).
    20. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.