IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222027955.html
   My bibliography  Save this article

Microwave calorimeter for dielectric and thermal analysis of materials

Author

Listed:
  • Sánchez, Juan R.
  • Gutiérrez-Cano, José D.
  • Plaza-González, Pedro J.
  • Penaranda-Foix, Felipe L.
  • Catalá-Civera, José M.

Abstract

A fast method for microwave processing and measurement of dielectric and thermal properties of materials as a function of temperature has been developed (MW-DETA). Unlike previous approaches, the method provides totally new quantitative measurements of the thermal parameters, which are fundamental for calculating the specific heat and in particular, the energy requirements of electrification of materials processing via microwave heating.

Suggested Citation

  • Sánchez, Juan R. & Gutiérrez-Cano, José D. & Plaza-González, Pedro J. & Penaranda-Foix, Felipe L. & Catalá-Civera, José M., 2023. "Microwave calorimeter for dielectric and thermal analysis of materials," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027955
    DOI: 10.1016/j.energy.2022.125909
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125909?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Wenlong & Zhao, Chao & Sun, Jing & Wang, Xiaolin & Zhao, Xiqiang & Mao, Yanpeng & Li, Xinning & Song, Zhanlong, 2015. "Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process," Energy, Elsevier, vol. 87(C), pages 678-685.
    2. Yan, Beibei & Jiao, Liguo & Li, Jian & Zhu, Xiaochao & Ahmed, Sarwaich & Chen, Guanyi, 2021. "Investigation on microwave torrefaction: Parametric influence, TG-MS-FTIR analysis, and gasification performance," Energy, Elsevier, vol. 220(C).
    3. Jafari, Hassan & Kalantari, Davood & Azadbakht, Mohsen, 2018. "Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying," Energy, Elsevier, vol. 142(C), pages 647-654.
    4. J. M. Serra & J. F. Borrás-Morell & B. García-Baños & M. Balaguer & P. Plaza-González & J. Santos-Blasco & D. Catalán-Martínez & L. Navarrete & J. M. Catalá-Civera, 2020. "Hydrogen production via microwave-induced water splitting at low temperature," Nature Energy, Nature, vol. 5(11), pages 910-919, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huayu & Yan, Bowen & Chen, Wei & Fan, Daming, 2023. "Prediction and innovation of sustainable continuous flow microwave processing based on numerical simulations: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Yan, Beibei & Li, Songjiang & Cao, Xingsijin & Zhu, Xiaochao & Li, Jian & Zhou, Shengquan & Zhao, Juan & Sun, Yunan & Chen, Guanyi, 2023. "Flue gas torrefaction integrated with gasification based on the circulation of Mg-additive," Applied Energy, Elsevier, vol. 333(C).
    4. Jiao, Liguo & Li, Jian & Yan, Beibei & Chen, Guanyi & Ahmed, Sarwaich, 2022. "Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling," Applied Energy, Elsevier, vol. 319(C).
    5. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    6. Mondal, Md. Hasan Tarek & Sarker, Md. Sazzat Hossain, 2024. "Comprehensive energy analysis and environmental sustainability of industrial grain drying," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Alok Dhaundiyal & Laszlo Toth, 2021. "Modelling of a Torrefaction Process Using Thermal Model Object," Energies, MDPI, vol. 14(9), pages 1-24, April.
    8. Li, Boyu & Fan, Xing & Yu, Senshen & Xia, Hongying & Nong, Yonghong & Bian, Junping & Sun, Mingyu & Zi, Wenhua, 2023. "Microwave heating of biomass waste residues for sustainable bioenergy and biomass materials preparation: A parametric simulation study," Energy, Elsevier, vol. 274(C).
    9. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    11. Xin, Yanbin & Wang, Quanli & Sun, Jiabao & Sun, Bing, 2022. "Plasma in aqueous methanol: Influence of plasma initiation mechanism on hydrogen production," Applied Energy, Elsevier, vol. 325(C).
    12. Ong, Hwai Chyuan & Yu, Kai Ling & Chen, Wei-Hsin & Pillejera, Ma Katreena & Bi, Xiaotao & Tran, Khanh-Quang & Pétrissans, Anelie & Pétrissans, Mathieu, 2021. "Variation of lignocellulosic biomass structure from torrefaction: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Safoura Zadhossein & Yousef Abbaspour-Gilandeh & Mohammad Kaveh & Mariusz Szymanek & Esmail Khalife & Olusegun D. Samuel & Milad Amiri & Jacek Dziwulski, 2021. "Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms," Energies, MDPI, vol. 14(16), pages 1-19, August.
    14. Wang, Zhi & Li, Jian & Yan, Beibei & Zhou, Shengquan & Zhu, Xiaochao & Cheng, Zhanjun & Chen, Guanyi, 2024. "Thermochemical processing of digestate derived from anaerobic digestion of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Özveren, Uğur & Kartal, Furkan & Sezer, Senem & Özdoğan, Z. Sibel, 2022. "Investigation of steam gasification in thermogravimetric analysis by means of evolved gas analysis and machine learning," Energy, Elsevier, vol. 239(PC).
    18. Luo, Chunlin & Liu, Shuai & Yang, Gang & Jiang, Peng & Luo, Xiang & Chen, Yipei & Xu, Mengxia & Lester, Edward & Wu, Tao, 2023. "Microwave-accelerated hydrolysis for hydrogen production over a cobalt-loaded multi-walled carbon nanotube-magnetite composite catalyst," Applied Energy, Elsevier, vol. 333(C).
    19. Silveira, Edgar A. & Macedo, Lucélia A. & Rousset, Patrick & Candelier, Kevin & Galvão, Luiz Gustavo O. & Chaves, Bruno S. & Commandré, Jean-Michel, 2022. "A potassium responsive numerical path to model catalytic torrefaction kinetics," Energy, Elsevier, vol. 239(PB).
    20. Panda, Brajesh Kumar & Mishra, Gayatri & Panigrahi, Shubham Subrot & Shrivastava, Shanker Lal, 2021. "Microwave-assisted parboiling of high moisture paddy: A comparative study based on energy utilization, process economy and grain quality with conventional parboiling," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222027955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.